Three-Dimensional Fluid Flow and Coupled Heat Transfer in Simplified Bipolar Plates
Numerical simulations were performed for three-dimensional fluid flow and coupled heat transfer in simplified bipolar plates. The Reynolds number of inlet flow is varied from 100 to 900 on the anode side while the Reynolds number is maintained as a constant of 100 on the cathode side. The solid wall surfaces of the bipolar plates are assumed to be adiabatically insulated, except that the active areas of the channels are supplied with uniform heat flux. Results of velocity and temperature distributions for different Reynolds numbers are presented and discussed. It is shown that effects of flow pattern on temperature distributions in channels becomes negligible when the Reynolds number is as high as 900.