A Scenario for a Secure Transportation System Based on Fuel From Biomass

Author(s):  
Ronald E. West ◽  
Frank Kreith

This article presents a scenario to meet the future fuel needs of the US ground transportation system that does not require hydrogen, can use existing technology and eventually transition to ethanol from biomass. This scenario is based on a combination of reduction of liquid fuel use by means of plug-in hybrid electric vehicles and generation of ethanol from biomass. The article also demonstrates the reduction in CO2 generation with this technology and the urgency of initiating a strategy for reducing gasoline consumption as soon as possible.

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Ronald E. West ◽  
Frank Kreith

This article presents a scenario to meet the future fuel needs of the U.S. ground transportation system that does not require hydrogen, can use existing technology, and eventually transition to ethanol from biomass. This scenario is based on a combination of the reduction of liquid fuel use by means of plug-in hybrid electric vehicles and generation of ethanol from biomass. The article also demonstrates the reduction in CO2 generation with this technology and the urgency of initiating a strategy for reducing gasoline consumption as soon as possible.


Author(s):  
Sam Golbuff ◽  
Elizabeth D. Kelly ◽  
Samuel V. Shelton

In order to decrease the use of petroleum and release of greenhouse gases such as carbon dioxide, the efficiency of transportation vehicles must be increased. One way to increase vehicle efficiency is by extending the electric-only operation of hybrid electric vehicles through the addition of batteries that can be charged using grid electricity. These plug-in hybrid electric vehicles (PHEVs) are currently being developed for introduction into the U.S. market. As with any consumer good, cost is an important design metric. This study optimizes a PHEV design for a mid-size, gasoline-powered passenger vehicle in terms of cost. Three types of batteries, Pb-acid, NiMH, and Li-ion, and three all-electric ranges of 10, 20, and 40 miles (16.1, 32.2, and 64.4 km) were examined. System modeling was performed using Powertrain Systems Analysis Toolkit (PSAT), an Argonne National Laboratory-developed tool. Performance constraints such as acceleration, sustained grade ability, and top speed were met by all systems. The societal impact of the least cost optimum system was quantified in terms of reduced carbon emissions and gasoline consumption. All of the cost optimal designs (one for each combination of all-electric distance and battery type) demonstrated more than a 60% reduction in gasoline consumption and 45% reduction in CO2 emissions, including the emissions generated from producing the electricity used to charge the battery pack, as compared with an average car in the current U.S. fleet. The least cost design for each all-electric range consisted of a Pb-acid design, including a necessary battery replacement of the battery pack twice during the 15 year assumed life. Due to the cost of the battery packs, the 10-mile all-electric range proved to be the least costly. Also, this system saved the most carbon dioxide emissions, a 53% reduction. The most fuel savings came from the PHEV40 system, yielding an 80% reduction in gasoline consumption.


2019 ◽  
Vol 26 (4) ◽  
pp. 63-68
Author(s):  
Wojciech Gis ◽  
Maciej Menes

AbstractThe article discusses the development of the world EV fleet in years 2010-2017. Estimates of fleet of plug-in hybrid electric vehicles (PHEV) and BEV in the world are presented. The total number of PHEVs registered in the world in 2016 was roughly 800 thousand (650 thousand in EU). Despite the fact that the sale of electric vehicles has increased considerably in recent years, in particular over 1.1 million in 2017, and also hybrid electric vehicles (PHEV) to approx. 760 thousand in 2017. The article also discusses the development of the electric vehicles market and annual new registrations of vehicles in a breakdown into respective countries. China is the definite leader in this area. In 2017 there were almost twice more BEVs registered in China than in the US and EU together. While the increase in the sale of BEVs in years 2016-2017 in the EU and the US accounted for approx. 50%, it came to over 90% in China. Among eight top worldwide BEV producers, there are four Chinese manufacturers. In the analysed 2017, there were slightly more than 7 thousand of hydrogen-fuelled passenger cars (FCEV) in use, with over 3,500 in the US, 2,300 in Japan and approx. 1,200 in Europe, and several hundred hydrogen-fuelled buses and several dozen hydrogen-fuelled trucks. The article also addresses the development of hydrogen refuelling stations (HRS) in recent years in different countries in the world, bearing in mind that the quantitative development of the hydrogen-fuelled car fleet is strongly associated with the number of hydrogen refuelling stations.


Sign in / Sign up

Export Citation Format

Share Document