Numerical Procedure for Assessment of Centrifugal Pump Cavitation Erosion

Author(s):  
Sergey F. Timushev ◽  
Vladimir A. Knyazev ◽  
Sergey S. Panaiotti ◽  
Vladimir A. Soldatov ◽  
Upendra Singh Rohatgi

Currently the cavitation erosion damage becomes a critical issue that limits the centrifugal pump life cycle extension. Despite of a long history of studying the cavitation erosion phenomenon in centrifugal pumps there are still no reliable assessment methods except semi-empirical formula having rather limited application and accuracy. The paper is presenting a novel method for assessment of centrifugal pump cavitation erosion combining 3D unsteady flow CFD modeling and numerical analysis of cavitation bubbles behavior. The Navier-Stokes equations are solved by a splitting method with the implicit algorithm and high-order numerical scheme for convective transfer terms. The 3D numerical procedure is based on non-staggered Cartesian grid with adaptive local refinement and a sub-grid geometry resolution method for description of curvilinear complex boundaries like blade surfaces. Rotation is accounted with implementation of “sliding-grid” technology. The method considers evolution of the bubble in 3D flow from initial conditions until the disruption moment with determination of the erosion jet power impact. Validation of the method on model feed centrifugal pump stages is completed for two model centrifugal impellers Centrifugal impeller #1 is designed with a goal of through-passed shaft pump flow modeling. There are completed computations of cavitating bubbles’ evolution under non-uniform pressure field that show the non-uniform pressure distribution near the blade surface causes an essential influence on cavitation erosion. Computational prediction of the impeller #1 cavitation erosion damage is confirmed experimentally.

Author(s):  
Qian-qian Li ◽  
Da-zhuan Wu

Due to the distinctive characteristic of massive flow rates, double-suction centrifugal pump has been extensively applied in lots of perspectives, such as drainage, irrigation, transportation projects and other hydraulic engineering realms. Nevertheless, the significance of the pressure fluctuation inside the double-suction centrifugal pump, which is getting more and more prominent under the soaring demands for low noise and comfortable living environment, could not be underestimated. Consequently, how to reduce the pressure fluctuation as far as possible and enhance the running stability of the pump is always the research hotspot. In this study, the double-suction centrifugal impeller with abominable vibration performance is redesigned to improve the internal flow and reduce the flow-induced noise. What’s addition, the two redesigned impellers wearing splitter blades were compared in staggered arrangement with different angles for the purpose of ulteriorly decreasing the pressure fluctuation. On the basis of Realizable k-ε model and SIMPLEC algorithm, the unsteady Reynolds-averaged Navier-Stokes equations (URANS) were resolved by means of CFD simulation and the flow performance and the vibration performance were validated with the experiments. The results illustrate that the redesigned impeller with multi-blade could raise the hydraulic performance and reduce the pressure fluctuation inside the pump. When the impeller of each side was laid with the staggered angle of 12 degrees, the pressure distribution tended to be more uniform and the pressure fluctuation was well ameliorated. Through the pressure fluctuation analysis in time domain and frequency domain, the pressure change inside the pumps could be evaluated quantitatively and accurately, hence different pumps could be contrasted in detail. The consequences of this paper could provide reference for pressure fluctuation reduction and vibration performance reinforcement of double-suction centrifugal pumps as well as other vane pumps.


Author(s):  
M DaqiqShirazi ◽  
R Torabi ◽  
A Riasi ◽  
SA Nourbakhsh

In this paper, the flow in the impeller sidewall gap of a low specific speed centrifugal pump is analyzed to study the effect of wear ring clearance and the resultant through-flow on flow field in this cavity and investigate the overall efficiency of the pump. Centrifugal pumps are commonly subject to a reduction in the flow rate and volumetric efficiency due to abrasive liquids or working conditions, since the wear rings are progressively worn, the internal leakage flow is increased. In the new operating point, the overall efficiency of the pump cannot be predicted simply by using the pump characteristic curves. The flow field is simulated with the use of computational fluid dynamics and the three-dimensional full Navier–Stokes equations are solved using CFX software. In order to verify the numerical simulations, static pressure field in volute casing and pump performance curves are compared with the experimental measurements. The results show that, for the pump with minimum wear ring clearance, the disk friction efficiency is the strongest factor that impairs the overall efficiency. Therefore, when the ring clearance is enlarged more than three times, although volumetric efficiency decreases effectively but the reduction in overall efficiency is remarkably smaller due to improvement in the disk friction losses.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Han Zhu ◽  
Ning Qiu ◽  
Chuan Wang ◽  
Qiaorui Si ◽  
Jie Wu ◽  
...  

Cavitation can reduce the efficiency and service life of the centrifugal pumps, and a long-term operation under cavitation conditions will cause cavitation damage on the surface of material. The external characteristic test of the IS65-50-174 single-stage centrifugal pump was carried out. Moreover, the cavitation mechanism under specific conditions was analyzed by numerical simulation. Considering the macroscopic cavitation flow structure in the centrifugal pump, three different cavitation erosion prediction methods were used to predict the erodible areas. The results show that the calculation results obtained by the density correction method (DCM) can well match the flow characteristics of the centrifugal pump under the rated conditions. When the centrifugal pump head drops by 3%, cavitation mainly occurs on the suction surface, and the cavity on the pressure surface is mainly concentrated near the front cover. The cavitation prediction method based on the time derivation of pressure change is not suitable for centrifugal pumps, while the prediction result of the erosive power method is more reasonable than the others. At time 0.493114 s, the maximum erosive power appears on the blade near the volute tongue, and its value is 1.46 e − 04  W.


2010 ◽  
Vol 43 ◽  
pp. 434-437
Author(s):  
Yuan Yi Liu ◽  
Rui Guang Li

Based on the Renault-averaged Navier-Stokes equations and a standard turbulence model, the different clearance of the outer edge on the impeller and the draft-tube is simulated by the commercial software CFX, in order to achieve optimal performance. The velocity distributions and pressure distributions within the stamping and welding multistage centrifugal pumps are analyzed. The reasonable clearance value which impact on its performance and properties have been discovered. This paper is helpful to improve the design theory of stamping and welding multistage centrifugal pumps.


Author(s):  
Yiyun Wang ◽  
Ji Pei ◽  
Shouqi Yuan ◽  
Wenjie Wang

Two-stage split case centrifugal pumps play an important role in large flow rate and high lift water transfer situations. To investigate the influence of baffles in between stages on the performance and internal flow characteristics, the unsteady simulations for the prototype pump were carried out by solving the three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport (SST) turbulence model. The structured grids were generated for the whole flow passage. The calculated performance results were verified by the experimental measurements. The entropy production method based on numerical simulation was applied to analyze the distribution and mechanism of flow losses. The results show that the turbulence dissipation is the dominant flow loss, and the viscous dissipation can be neglected. The baffles can reduce the turbulence dissipation power obviously and can improve the hydraulic efficiency by maximum 5%, especially under QBEP and over-load conditions. The baffles have the greatest effect on the hydraulic losses in the double suction impeller., because they change the flow characteristics in the channels between the first stage impeller and the double suction impeller, affecting the inflow condition dramatically for the impeller. The study can give a reference to optimize the design of the two-stage split case centrifugal pump for high efficiency.


2014 ◽  
Vol 44 (1) ◽  
pp. 105-110
Author(s):  
L. ZHOU ◽  
W. D. SHI ◽  
L. BAI ◽  
W. G. LU ◽  
W. LI

 In the operation process of centrifugal pumps, especially in multi-stage pumps, axial force is one of the main factors which affect the pump safety and reliability. This paper presents the axial force study in a deep-well centrifugal pump (DCP) with theoretical calculation, numerical simulation and experimental measure. Three different calculation formulas were respectively introduced and used in the model pump. The calculated results were compared and analyzed with the numerical simulation values and experimental results, and the detailed numerical simulation methods and experimental configuration were explained. Finally, the more accurate formula for calculating the axial force in oblique flow centrifugal impeller was selected out. At the rated flow point, the deviation of the axial force obtained by numerical simulation and the experimental value is approximately 3.8%, and the calculated result of selected formula only less than the experimental results of 2.6%. The results provide a theoretical basis for the axial force calculation in the centrifugal impeller design process.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Rouhollah Torabi ◽  
Seyyed Ahmad Nourbakhsh

Centrifugal pump delivery head and flow rate drop effectively during the pumping of viscous fluids. Several methods and correlations have been developed to predict reduction rate in centrifugal pump performance when handling viscous fluids, but their results are not in very good agreement with each other. In this study, a common industrial low specific speed pump, which is extensively used in different applications, is studied. The entire pump, including impeller, volute, pipes, front and rear sidewall gaps, and balance holes, is simulated in Computational Fluid Dynamics and 3D full Navier Stokes equations are solved. CFD results are compared with experimental data such as pump performance curves, static pressure in casing, and disk friction loss. Dimensionless angular velocity and leakage rate are investigated in sidewall gap and efficiency variation due to viscosity is studied. The results demonstrate that the behavior of the fluid in sidewall gap is strictly sensitive to viscosity. Increasing viscosity improves the volumetric efficiency by reducing internal leakage through wear rings and balance holes, causing, however, a significant fall in the disk and overall efficiency. Results lead to some recommendations for designing centrifugal pumps which may be used in transferring viscous fluids.


2018 ◽  
Vol 15 (1) ◽  
pp. 88 ◽  
Author(s):  
S.A.I. Bellary ◽  
Afzal Hussain ◽  
Abdus Samad ◽  
R.A. Kanai

Crude oil transport is an essential task in oil and gas industries, where centrifugal pumps are extensively used. The design of a centrifugal pump involves a number of independent parameters which affect the pump performance. Altering some of the parameters within a realistic range improves pump performance and saves a significant amount of energy. The present research investigated the pump characteristics by modifying the number of blades and the exit blade-angles. Reynolds-Averaged Navier-Stokes equations with standard k-ε two-equation turbulence closure were used for steady and incompressible flow of crude oil through the pump. The experimental set-up was installed and the pump performance calculated numerically  was compared with the experiments.   The investigations showed that the number of blades and the exit blade-angles have a significant influence on the head, shaft power, and efficiency. The vortical flow structures, recirculation and reverse flow characteristics around the impeller were investigated to explain the flow dynamics of impeller and casing. A larger number of blades on the rotor showed dominant streamlined flow without any wake phenomena. The combined effect of the number of blades and exit blade angle has led to an increase in head and efficiency through the parametric optimization.


Author(s):  
Naseer Hadi ◽  
Badih Jawad ◽  
Munther Hermez ◽  
Hossam Metwally ◽  
Liping Liu

Abstract Designing a turbomachine comes with many challenges due to many parameters affecting its performance. This study presents a design to reduce losses in turbulence flow and surface friction by using a disk located between the rotating centrifugal impeller and the pump casing, which in turn enhances the centrifugal pump performance, upon rotating freely during normal operation. Under a constant operating speed of 3000 RPM, the new design is shown to improve the centrifugal pump performance. The turbulent flow between the rotating impeller and pump stationary walls increases the frictional losses. The highest friction occurs in the flow between two surfaces, one being close to zero velocity and the other one moving at high speed. Flow recirculation in the enclosure is a major problem that leads to a decrease in turbomachine’s performance. Two-dimensional Computational Fluid Dynamics (CFD) analysis is used to numerically simulate the rotating flow field inside the centrifugal pump chamber and to provide critical hydraulic design information. In this study, ANSYS-FLUENT R19.2 is used to analyze the input torque under different angular velocities by applying a disk with various thicknesses at four different locations to get the best results. The flow field in the chamber is investigated using 2-D Naiver-Stokes Equations with a Realizable k-ϵ turbulence model. Standard water was used as the working fluid. The numerical analysis gives an idea of how the freely rotating disks behave, and the results will be compared to find the most efficient case of centrifugal pump operation with an adjacent disk. The best-case new design will identify the highest reduction of input power by 24.4%. This study will introduce to the future work of a three-dimensional model.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
José González ◽  
Jesús Manuel Fernández Oro ◽  
Katia M. Argüelles Díaz ◽  
Eduardo Blanco

The flow in a double suction centrifugal pump is presented in this paper. The static performance of the machine has been obtained in a proper test rig, and the results have been compared with equivalent numerical results from an Unsteady Reynolds Averaged Navier–Stokes Equations (URANS) calculation. In a second step, the numerical results have been exploited to get detailed information about the flow inside the turbomachine. The main goal of the study is, on one hand, the validation of the numerical procedure proposed and, on the other hand, the detailed flow-field analysis for the machine, which points out the possibilities and drawbacks of the pump design. For a double suction machine, the inlet flow is characterized by the existence of a particular geometry that tries to force a uniform flow, at least for the nominal flow rate. On the contrary, at off-design conditions the lack of uniformity produces an unsteady incidence that gives rise to strong hydraulic loading variations. Instantaneous and average pressure fields have been analyzed in this paper to study the evolution of such inlet flow unsteadiness throughout the impeller and the volute. The analysis of both static and dynamic effects on the pump shaft has been carried out from the numerical calculation of the radial forces. The results have shown that the performance of the double suction centrifugal pump is suitable for typical design conditions. The best operation point or nominal flow rate is found to be at φ=0.274, which turns out to produce a specific speed ωS=1.25, well in the range for centrifugal impellers. This operating point is also found to be the one with better efficiency and with better flow characteristics, regarding the axisymmetry of the flow pattern and the fluid forces obtained. However, some particular features produce also interesting results for off-design operating points.


Sign in / Sign up

Export Citation Format

Share Document