Impact of Altering Aspect Ratio of the Loading Particles on a Suspension’s Thermal Conductivity

Author(s):  
A. S. Cherkasova ◽  
J. W. Shan

It has been recognized that heat-transfer fluids used to convey thermal energy produced by one device to another can exhibit significant increases in thermal conductivity with the addition of highly conductive particles. Suspensions of nano- and micro-particles have attracted the most recent interest because of their enhanced stability against sedimentation, reduction in potential for clogging a flow system, as well as the tantalizing possibility of unexpected enhancements in thermal conductivity that have been reported in some experiments. Among various suspensions, considerable attention has focused on those containing large-aspect-ratio particles, such as carbon nanotubes. Although recent experiments have demonstrated enormous heat-transfer enhancements in these fluids, such increases were reportedly not in agreement with existing macroscale theories [1–3]. In this research we report on an experimental study of the effects of particle aspect ratio on the effective thermal conductivity of micro- and nano-particle suspensions. The influence of particle aspect ratio on the thermal properties of suspensions was first studied in dispersions of micron-sized, silicon-carbide particles with varying aspect ratio. To carry out a detailed comparison with theoretical predictions, particle aspect ratio and size distributions were measured. It is shown that the conductivity of the silicon-carbide suspensions can be quantitatively predicted by an effective-medium theory (EMT), provided the volume-weighted aspect ratio of the particles is used. The particle-aspect-ratio effect was further studied in the suspensions of multi-walled carbon nanotubes. Experimental data on the thermal conductivity of nanotube suspensions could also be interpreted in terms of the aspect-ratio dependence predicted by EMT if the additional nanoscale effect of interfacial resistance was considered.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Rahul S. Kapadia ◽  
Brian M. Louie ◽  
Prabhakar R. Bandaru

We report and model a linear increase in the thermal conductivity (κ) of polymer composites incorporated with relatively low length/diameter aspect ratio multiwalled carbon nanotubes (CNTs). There was no evidence of percolation-like behavior in the κ, at/close to the theoretically predicted threshold, which was attributed due to the interfacial resistance between the CNT and the polymer matrix. Concomitantly, the widely postulated high thermal conductivity of CNTs does not contribute to the net thermal conductivity of the composites. Through estimating the interfacial resistance and the thermal conductivity of the constituent CNTs, we conclude that our experimental and modeling approaches can be used to study thermal transport behavior in nanotube–polymer composites.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Anna S. Cherkasova ◽  
Jerry W. Shan

The effective thermal conductivities of aqueous nanofluids containing surfactant-stabilized multiwalled carbon nanotubes were measured and compared with the predictions of effective medium theory (Nan, C.-W., et al., 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699). Detailed characterization of nanotube morphology was carried out through electron microscopy, while the nanotube agglomeration state was monitored through optical microscopy and absorption measurements. An optimum surfactant-to-nanotube mass ratio was found for the particular surfactant, sodium dodecylbenzene sulfonate, which resulted in the greatest increase in thermal conductivity. Taking into consideration the volume-weighted aspect ratio of the nanotubes, the measured thermal conductivities of the suspensions were shown to be in good agreement with calculations for a reasonable choice of interfacial resistance on the particle/liquid interface. The effect of particle aspect ratio on the suspension’s thermal conductivity was further demonstrated and compared with theory by reducing the nanotube length through intense ultrasonication. The effect of particle aggregation on the thermal conductivity was also investigated by destabilizing previously stable suspensions with ethanol addition, which causes surfactant desorption and bundling of nanotubes. The measured thermal conductivities were correlated with absorption measurements and microscopic visualizations to show that particle aggregation decreases the thermal conductivity of the nanofluid by reducing the effective particle aspect ratio.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Anna S. Cherkasova ◽  
Jerry W. Shan

The influence of particle anisotropy on the effective thermal conductivity of a suspension is experimentally investigated. Suspensions of micron-sized, silicon-carbide particles with varying aspect-ratio distributions were prepared and measured. It is shown that the conductivity of the silicon-carbide suspensions can be quantitatively predicted by the effective medium theory of Nan et al. (1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys. 81(10), pp. 6692–6699), provided the volume-weighted aspect ratio of the particles is used. Recent experimental data on multiwalled-nanotube-in-oil suspensions by Yang et al. (2006, “Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions,” J. Appl. Phys., 99(11), 114307) are also analyzed and shown to be in at least qualitative agreement with the effective-medium-theory prediction that the thermal conductivity of suspensions is enhanced by large aspect-ratio particles.


2008 ◽  
Vol 92 (2) ◽  
pp. 023110 ◽  
Author(s):  
Jesse Wensel ◽  
Brian Wright ◽  
Dustin Thomas ◽  
Wayne Douglas ◽  
Bert Mannhalter ◽  
...  

2020 ◽  
Vol 44 (43) ◽  
pp. 18823-18830
Author(s):  
Yue Ruan ◽  
Nian Li ◽  
Cui Liu ◽  
Liqing Chen ◽  
Shudong Zhang ◽  
...  

The TPU-based thermally conductive composite reaches a thermal conductivity of 1.35 W m−1 K−1 and increases the tensile strength by at least 300%.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Eiyad Abu-Nada

Heat transfer enhancement in horizontal annuli using variable thermal conductivity and variable viscosity of CuO-water nanofluid is investigated numerically. The base case of simulation used thermal conductivity and viscosity data that consider temperature property dependence and nanoparticle size. It was observed that for Ra≥104, the average Nusselt number was deteriorated by increasing the volume fraction of nanoparticles. However, for Ra=103, the average Nusselt number enhancement depends on aspect ratio of the annulus as well as volume fraction of nanoparticles. Also, for Ra=103, the average Nusselt number was less sensitive to volume fraction of nanoparticles at high aspect ratio and the average Nusselt number increased by increasing the volume fraction of nanoaprticles for aspect ratios ≤0.4. For Ra≥104, the Nusselt number was deteriorated everywhere around the cylinder surface especially at high aspect ratio. However, this reduction is only restricted to certain regions around the cylinder surface for Ra=103. For Ra≥104, the Maxwell–Garnett and the Chon et al. conductivity models demonstrated similar results. But, there was a deviation in the prediction at Ra=103 and this deviation becomes more significant at high volume fraction of nanoparticles. The Nguyen et al. data and the Brinkman model give completely different predictions for Ra≥104, where the difference in prediction of the Nusselt number reached 50%. However, this difference was less than 10% at Ra=103.


Author(s):  
Navdeep Singh ◽  
Debjyoti Banerjee

Due to their very high thermal conductivity carbon nanotubes have been found to be an excellent material for thermal management. Experiments have shown that the heaters coated with carbon nanotubes increase the heat transfer by as much as 60%. Also when nanotubes are used as filler materials in composites, they tend to increase the thermal conductivity of the composites. But the increase in the heat transfer and the thermal conductivity has been found to be much less than the calculated values. This decrease has been attributed to the interfacial thermal resistance between the carbon nanotubes and the surrounding material. MD simulations were performed to study the interfacial thermal resistance between the carbon nanotubes and the liquid molecules. In the simulations, the nanotube is placed at the center of the simulation box and a temperature of 300K is imposed on the system. Then the temperature of the nanotube is raised instantaneously and the system is allowed to relax. From the temperature decay, the interfacial thermal resistance between the carbon nanotube and the liquid molecules is calculated. In this study the liquid molecules under investigation are n-heptane, n-tridecane and n-nonadecane.


Author(s):  
Satish Kumar ◽  
Jayathi Y. Murthy

Periodic arrays of particles, foams, and other structures impregnated with a static fluid play an important role in heat transfer enhancement. In this paper, we develop a numerical method for computing conduction heat transfer in periodic beds by exploiting the periodicity of heat flux and the resulting linear variation of mean temperature. The numerical technique is developed within the framework of an unstructured finite volume scheme in order to enable the computation of effective thermal conductivity for complex fluid-particle arrangements. The method is applied to the computation of effective thermal conductivity of ordered as well as random beds of spheres and rods. The effect of varying surface area, aspect ratio, volume fraction, orientation, and distribution is studied for various solid-to-fluid conductivity ratios. Unlike classical theories which predict only a dependence on volume fraction, these direct simulations show that aspect ratio, distribution, and alignment of particles have an important influence on the effective thermal conductivity of the bed.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 180 ◽  
Author(s):  
Bahaa Saleh ◽  
Lingala Syam Sundar

The heat transfer, friction factor, and collector efficiency are estimated experimentally for multi-walled carbon nanotubes+Fe3O4 hybrid nanofluid flows in a solar flat plate collector under thermosyphon circulation. The combined technique of in-situ growth and chemical coprecipitation was utilized to synthesize the multi-walled carbon nanotubes+Fe3O4 hybrid nanoparticles. The experiments were carried out at volume flow rates from 0.1 to 0.75 L/min and various concentrations from 0.05% to 0.3%. The viscosity and thermal conductivity of the hybrid nanofluids were experimentally measured at different temperatures and concentrations. Due to the improved thermophysical properties of the hybrid nanofluids, the collector achieved better thermal efficiency. Results show that the maximum thermal conductivity and viscosity enhancements are 28.46% and 50.4% at 0.3% volume concentration and 60 °C compared to water data. The Nusselt number, heat transfer coefficient, and friction factor are augmented by 18.68%, 39.22%, and 18.91% at 0.3% volume concentration and 60 °C over water data at the maximum solar radiation. The collector thermal efficiency improved by 28.09% at 0.3 vol. % at 13:00 h daytime and a Reynolds number of 1413 over water data. Empirical correlations were developed for friction factor and Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document