particle aspect ratio
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1682
Author(s):  
Marcin Janczarek ◽  
Zhishun Wei ◽  
Tharishinny R. Mogan ◽  
Lei Wang ◽  
Kunlei Wang ◽  
...  

Decahedral anatase particles (DAPs) have been prepared by the gas-phase method, characterized, and analyzed for property-governed photocatalytic activity. It has been found that depending on the reaction systems, different properties control the photocatalytic activity, that is, the particle aspect ratio, the density of electron traps and the morphology seem to be responsible for the efficiency of water oxidation, methanol dehydrogenation and oxidative decomposition of acetic acid, respectively. For the discussion on the dependence of the photocatalytic activity on the morphology and/or the symmetry other titania-based photocatalysts have also been analyzed, that is, octahedral anatase particles (OAP), commercial titania P25, inverse opal titania with and without incorporated gold NPs in void spaces and plasmonic photocatalysts (titania with deposits of gold). It has been concluded that though the morphology governs photocatalytic activity, the symmetry (despite its importance in many cases) rather does not control the photocatalytic performance.


2021 ◽  
Vol 11 (3) ◽  
pp. 962
Author(s):  
Wenqian Lin ◽  
Ruifang Shi ◽  
Jianzhong Lin

Distribution and deposition of cylindrical nanoparticles in a turbulent pipe flow are investigated numerically. The equations of turbulent flow including the effect of particles are solved together with the mean equations of the particle number density and the probability density function for particle orientation including the combined effect of Brownian and turbulent diffusion. The results show that the distribution of the particle concentration on the cross-section becomes non-uniform along the flow direction, and the non-uniformity is reduced with the increases of the particle aspect ratio and Reynolds number. More and more particles will align with their major axis near to the flow direction, and this phenomenon becomes more obvious with increasing the particle aspect ratio and with decreasing the Reynolds number. The particles in the near-wall region are aligned with the flow direction obviously, and only a slight preferential orientation is observed in the vicinity of pipe’s center. The penetration efficiency of particle decreases with increasing the particle aspect ratio, Reynolds number and pipe length-to-diameter ratio. Finally, the relationship between the penetration efficiency of particle and related synthetic parameters is established based on the numerical data.


2020 ◽  
Vol 4 (4) ◽  
pp. 55
Author(s):  
Florian Günther ◽  
Qingguang Xie ◽  
Jens Harting

We investigate the equilibrium orientation and adsorption process of a single, ellipsoidal Janus particle at a fluid–fluid interface. The particle surface comprises equally sized parts that are hydrophobic or hydrophilic. We present free energy models to predict the equilibrium orientation and compare the theoretical predictions with lattice Boltzmann simulations. We find that the deformation of the fluid interface strongly influences the equilibrium orientation of the Janus ellipsoid. The adsorption process of the Janus ellipsoid can lead to different final orientations determined by the interplay of particle aspect ratio and particle wettablity contrast.


2020 ◽  
Vol 1 (3) ◽  
pp. 99-107
Author(s):  
Ekaterina S. Tsobkallo ◽  
Olga A. Moskalyuk ◽  
Vladimir E. Yudin ◽  
Andrey N. Aleshin

2019 ◽  
Vol 355 ◽  
pp. 564-572 ◽  
Author(s):  
Priscilla J. Hill ◽  
Sheena M. Reeves

Soft Matter ◽  
2019 ◽  
Vol 15 (18) ◽  
pp. 3649-3654 ◽  
Author(s):  
Nicole M. James ◽  
Huayue Xue ◽  
Medha Goyal ◽  
Heinrich M. Jaeger

Dense suspensions of particles in a liquid exhibit rich, non-Newtonian behaviors such as shear thickening (ST) and shear jamming (SJ).


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Wenqian Lin ◽  
Peijie Zhang

The motion of cylindrical particles in a mixing layer is studied using the pseudospectral method and discrete particle model. The effect of the Stokes number and particle aspect ratio on the mixing and orientation distribution of cylindrical particles is analyzed. The results show that the rollup of mixing layer drives the particles to the edge of the vortex by centrifugal force. The cylindrical particles with the small Stokes number almost follow fluid streamlines and are mixed thoroughly, while those with the large Stokes number, centrifugalized and accumulated at the edge of the vortex, are poorly mixed. The mixing degree of particles becomes worse as the particle aspect ratio increases. The cylindrical particles would change their orientation under two torques and rotate around their axis of revolution aligned to the vorticity direction when the shear rate is low, while aligning on the flow-gradient plane beyond a critical shear rate value. More particles are oriented with the flow direction, and this phenomenon becomes more obvious with the decrease of the Stokes number and particle aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document