A Comparison of 2-D Molecular Tagging Velocimetry (MTV) and Micro Particle Image Velocimetry (µPIV) for Microscale Flows

Author(s):  
Farhan Ahmad ◽  
Mona Abdolrazaghi ◽  
David S. Nobes

A 2-D scanning molecular tagging velocimetry technique is presented. The described MTV technique utilizes a scanning laser system enabling two-dimensional flow velocity measurements. The laser scanning system allows the tagging of molecules seeded in the flow of any desired pattern. This array of small dot markers in the region of interest is visualized using an epi-fluorescent optical imaging system. The scanning system facilitates the convenient maneuvering of the laser beam allowing the tagging of either a single point or a pattern. The laser beam is focused onto a single point leading to a more efficient tagging process. A standard particle tracking velocimetry (PTV) approach is used to resolve the two components of the flow velocity. Results obtained show the capability of the designed system to tag a region in the centre of the field of view. The tagging laser will be moved to any desired location within the field of view to tag the desired region.

2018 ◽  
Vol 18 ◽  
pp. 98-105
Author(s):  
N. V. Pavliuk

The issues related to the introduction of innovative methods, technologies and technological means in the investigation of crimes are considered. It is noted that one of the main directions of the development of Criminalistics is the assimilation of the virtual reality associated with computerization of spheres of life, implementation of modern technologies and their use in law enforcement. Technology use of laser scanning of terrain and objects resulting in 3D model is produced allows several times to increase informative value of data collected at the incident scene, provides a visual and convenient visualization in three-dimensional form. As against photo and video images, 3D model has a stereoscopic image and the ability to freely change the angle while viewing. Besides to scanning results can be stored on any digital media without the possibility of changes or adjustments. Attention is focused on the technological capabilities of 3D-visualization systems on examples of their use in foreign countries as technological means of capturing the situation of the scene and the subsequent of a crime reconstruction. Thus, using a portable three-dimensional imaging system for working with volumetric traces at a crime scene, it is possible to obtain accurate three-dimensional images of traces of protectors or footprints (shoes) on soil and snow. This system is an alternative to traditional methods of fixing evidence: photofixing and making plaster casts. Unlike other systems, new approach does not require the use of lasers. The expediency of expanding the range of 3D laser scanning system use in modern investigative and judicial practice of our state with the aim of increasing the level of provision of pre-trial investigation authorities with technological means and bringing it closer to European standards is argued.


Author(s):  
H. C. Hu ◽  
G. Q. Zhou ◽  
X. Zhou ◽  
Y. Z. Tan ◽  
J. D. Wei

Abstract. At present, the main LiDAR is single-point lidar. APD arrays and laser arrays are restricted to exit, so the number of area array LiDAR is scarce. Single-point lidar can't form a scanning pattern with only one laser point on the ground after launching laser, so it must have a set of scanning device for single-point lidar. The scanning device designed in this paper forms a circular scanning area on the ground by rotating the refraction prism, and at the same time forms a conical field of view. At present, marine LiDAR uses this kind of scanner more frequently. The advantages of this scanner are: simple mechanical structure and smooth operation. Overlapping elliptical scanning trajectories can be obtained during flight, which increases scanning density. Ultra-low dispersion glass is used as refractive prism in this paper. In a certain range of laser frequencies, the refractive prism has almost the same effect on laser refraction at different frequencies. The simulation results show that the scanner can be used as a common LiDAR scanner or a dual-frequency LiDAR scanner.


2011 ◽  
Vol 222 ◽  
pp. 40-43 ◽  
Author(s):  
Inga Dabolina ◽  
Ausma Vilumsone ◽  
Juris Blums

The scanning of human body as a method for gaining human measurements has several preferences. The gathering of data is possible in a very short time. In comparison to manual measuring methods, scanning acquires a larger amount of measurements. There are several modes of gaining human body measurements using the scanning system: laser scanning, light beam scanning, etc. A research on the laser beam reflection capabilities on different textile materials has been performed. The description of laser reflections has been compared to the Lambert’s law’s characteristics. The matrix of material selection is made in the process of planning the experiment and all possible materials are presented in this matrix. Eight textile materials are chosen for the experimental work: six lingerie and two additional materials. A laser beam with an angle of incidence of 0º and 45º is used to make the experiment. The dependence of the results on the wavelength of laser beams has also been compared.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Salih K. Kalyoncu ◽  
Rasul Torun ◽  
Yuewang Huang ◽  
Qiancheng Zhao ◽  
Ozdal Boyraz

We demonstrate a fast dispersive laser scanning system by using MEMS digital micro-mirror arrays technology. The proposed technique utilizes real-time dispersive imaging system, which captures spectrally encoded images with a single photodetector at pulse repetition rate via space-to-time mapping technology. Wide area scanning capability is introduced by using individually addressable micro-mirror arrays as a beam deflector. Experimentally, we scanned ∼20 mm2 at scan rate of 5 kHz with ∼150 μm lateral and ∼160 μm vertical resolution that can be controlled by using 1024 × 768 mirror arrays. With the current state of art MEMS technology, fast scanning with <30 μs and resolution down to single mirror pitch size of 10.8 μm is also achievable.


2021 ◽  
Author(s):  
Hamed Mohammadbagherpoor ◽  
Alperen Acemoglu ◽  
Leonardo S. Mattos ◽  
Darwin Caldwell ◽  
James J. Johnson ◽  
...  

Abstract Biomedical robotic systems continue to hold unlimited potential for surgical procedures. Robotized laser endoscopic tools provide surgeons with increased accuracy in the laser ablation of tissue and tumors. The research here catalogs the design and implementation of a new laser endoscopic tool for tissue ablation. A novel feature of this new device is the inclusion of a feedback loop that measures the position of the laser beam via a photo-detector sensor. The scale of this new device was governed by the dimensions of the photo-detector sensor. The tip of the laser's fiber optic cable is controlled by the torque interaction between permanent magnet rings surrounding the fiber optic and the custom designed solenoid coils. Prior to building the physical test-bed the system was modeled and simulated using COMSOL software. In pre-clinical trials, the physical experimental results showed that the designed prototype laser scanner system accurately track different ablation patterns and gives a consistent output position for the laser beam however, the heat diffusion into the tissue around the desired line of the geometric shape would give wider ablation margins than was desirable.


Author(s):  
B. R. Thompson ◽  
D. Maynes ◽  
B. W. Webb

There is a need for increased understanding of the momentum transport phenomena in micro-fluidic geometries to aid in the design and optimization of such devices. Micro-molecular tagging velocimetry (μMTV) has been used to characterize the hydrodynamic developing flow in a microtube with an inner diameter of 180 μm. μMTV is a non-intrusive laser-based technique for obtaining detailed measurements of velocity profiles in flows dominated by a single velocity component. μMTV measurements are made by directing an ultra-violet laser beam into a flow containing phosphorescent tracer molecules. The laser beam excites a line of phosphorescence in the flow. Subsequently, two digital images, separated by a short time delay, of the line are captured by a CCD camera. The displacement of the tracer molecules between the images can be determined from the two images and the velocity of the flow is thus calculated. Velocity profile data at ten axial locations within the hydrodynamic developing region of a 180 μm diameter tube were acquired using the μMTV approach. The uncertainty for these measurements ranged from 1.5% to 5.5% of the center line velocity. Data were taken at Reynolds numbers, Re, of 60, 140, 290, and 340. It was observed that a vena-contracta existed in the first few tube diameters for all Re. The velocity profiles obtained very close to the tube entrance exhibited a uniform velocity core flow surrounded by regions of relatively stagnant fluid in the near wall regions. The profiles evolved in the downstream direction until the classical parabolic distribution was observed. The total hydrodynamic entry length agrees well with values published in the literature for macroscale flows, obtained from numerical simulation.


Author(s):  
Akira Arimoto ◽  
Susumu Saito ◽  
Takeshi Mochizuki ◽  
Minoru Seino ◽  
Yasuo Kikuchi ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6952
Author(s):  
Xianjian Zou ◽  
Wenbin Hu ◽  
Huan Song ◽  
Bingrui Chen

Flow velocity in silt carrying flow is one key parameter to many river engineering problems. A visual measurement technique of velocity profile distribution in silt carrying flow is provided using a portable ultrasound imaging system and an improved iterative multi-grid deformation algorithm. A convex array probe in the system is used to obtain a series of ultrasonic images at different times. Window offset and an iterative computing scheme for reducing interrogation window size in the algorithm improve the accuracy and efficiency of flow velocity measurement in regions with velocity gradients. Results show that the measured profile velocities can be more acceptable after being compared with time-averaged stream-wise velocities of profiles at ten positions in the same silt carrying flow and subsequently verified by comparing the point-by-point standard value. The measured velocity is more in agreement with the theoretical value, with the minimum root mean square error in the ultrasound beam sweep effect calculated by using optimal interrogation size parameters. The system is a feasible alternative to the single-point measurement technique in silt carrying flow. The iterative multi-grid deformation algorithm can analyze velocity profile distribution with gradients simultaneously, which can help the real-time measurement of multiple spatial velocity distribution and turbulence.


Sign in / Sign up

Export Citation Format

Share Document