Development of a Failure Locus for a 3-Dimensional Anterior Crutiate Ligament: A Finite Element Analysis

Author(s):  
A. Orsi ◽  
N. H. Yang ◽  
A. Vaziri ◽  
P. K. Canavan ◽  
H. N. Hashemi

This study investigated movement combinations which may cause injury to the anterior cruciate ligament (ACL). A 3-Dimensional finite element knee joint model, including bones and ligament bundles, was developed. Bone was modeled as rigid, and a transversely isotropic material was applied to the ligament structures. This study incorporates a novel approach for developing bundle specific prestrain within the ligament structures. The bundles were stretched from their zero load lengths to their reference lengths, producing a strain field mimicking in vivo conditions at full knee extension. A failure locus was created by performing multiple knee joint motion combination simulations until ligament failure. The locus shows which movement combinations of internal/external femoral rotation and varus/valgus angle cause failure within the ACL bundles at 25° of knee flexion. The 3D model provided improved accuracy for locating bundle ruptures. By monitoring stresses and strains within the ligament bundles during knee joint orientation simulations, ruptures were virtually diagnosed. The relationship between knee joint orientation and ligament rupture provides a spectrum for the propensity of ACL injury. The results highlight femoral external rotation relative to the tibia as an important factor related to ACL injury. The results also show the posterolateral bundle to be more susceptible to rupture than the anteromedial bundle. These results have various clinical applications. In sports where ACL injuries are prevalent, training programs can be adapted to address the avoidance of harmful knee orientations. Monitoring bundle rupture locations also increases insight for practitioners in identifying more precise injury mechanisms.

Author(s):  
Andrew Homyk ◽  
Paul K. Canavan ◽  
Alexander Orsi ◽  
Story Wibby ◽  
Nicholas Yang ◽  
...  

Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athlete’s quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. This study was conducted to provide insight into the specific knee orientations associated with ACL injuries. A failure locus for the ACL was developed by simulating multiple loading scenarios using a 3-D finite element analysis (FEA) model of the knee. The results indicated varus and valgus were more dominant to the ACL injury compared to femoral rotation. The order of MCL failure, ACL failure, and maximum meniscus stress was also determined with respect to time during loading. The results of this study could be used to develop training programs focused on the avoidance of the described combination of movements, which may lead to ACL injury.


Author(s):  
Carmen E. Quatman ◽  
Ata M. Kiapour ◽  
Ali Kiapour ◽  
Jason W. Levine ◽  
Samuel C. Wordeman ◽  
...  

Over 100,000 anterior cruciate ligament (ACL) injuries occur annually in the United States [1]. Of these, 70% are classified as non-contact, many of which occur subsequent to a landing from a jump [2]. While most agree that quadriceps (Q) and hamstrings (H) have a significant contribution in knee biomechanics, the role of quadriceps and hamstrings muscle loads and their ratio (Q/H) in ACL injury remains controversial. Understanding muscle recruitment in high risk activities may improve our knowledge of ACL injury mechanisms. Such insight may improve current prevention strategies to decrease the risk of ACL injury and damage to secondary anatomical structures, all of which may in turn minimize associated posttraumatic knee osteoarthritis. As in vivo quantification of muscle loads remains challenging, especially under dynamic conditions, validated finite element (FE) models of the knee can be used to characterize the role of muscle loads in ACL injury. FE analysis has provided considerable insight into knee joint biomechanics, including ligament function, ligament reconstruction technique and implant design. This study utilized a validated FE model of the knee joint to study the effects of quadriceps to hamstrings ratio (Q/H) on ACL strain during a simulated landing from a jump. We hypothesized that both the ratio and magnitude of muscle loads are critical determinants of ACL loading. Further, a threshold may be reached as the magnitude of quadriceps load exceeds hamstrings load.


2014 ◽  
Vol 601 ◽  
pp. 167-170
Author(s):  
Lucian Bogdan ◽  
Cristian Sorin Nes ◽  
Angelica Enkelhardt ◽  
Nicolae Faur ◽  
Carmen Sticlaru ◽  
...  

This paper presents a finite element analysis in order to determinate the stress distribution in an proposed model of the artificial cruciate ligament of the knee joint during the gait cycle.


Author(s):  
Shenghui Lan ◽  
Abhishek Chandra ◽  
Ling Qin ◽  
X. Sherry Liu

Micro computed tomography (μCT) has been widely used to study 3-dimensional (3D) microstructure of bone specimens. In the recent decade, in vivo μCT scanners have become available to monitor longitudinal bone changes in rodents (1,2). The current in vivo μCT scan can obtain images with an isotropic voxel size up to 10.5 μm, which is high enough for direct 3D bone microstructural analyses. Moreover, based on these high-resolution images, micro finite element (μFE) models can be generated to estimate mechanical properties of bone. Therefore, by using in vivo μCT imaging and μFE analysis techniques, changes in geometry, microstructure, and mechanical properties of rodent bone, in response to either diseases or treatments, can be visualized and quantified over time.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1035
Author(s):  
Eva-Maria Winkelmeyer ◽  
Justus Schock ◽  
Lena Marie Wollschläger ◽  
Philipp Schad ◽  
Marc Sebastian Huppertz ◽  
...  

While providing the reference imaging modality for joint pathologies, MRI is focused on morphology and static configurations, thereby not fully exploiting the modality’s diagnostic capabilities. This study aimed to assess the diagnostic value of stress MRI combining imaging and loading in differentiating partial versus complete anterior cruciate ligament (ACL)-injury. Ten human cadaveric knee joint specimens were subjected to serial imaging using a 3.0T MRI scanner and a custom-made pressure-controlled loading device. Emulating the anterior-drawer test, joints were imaged before and after arthroscopic partial and complete ACL transection in the unloaded and loaded configurations using morphologic sequences. Following manual segmentations and registration of anatomic landmarks, two 3D vectors were computed between anatomic landmarks and registered coordinates. Loading-induced changes were quantified as vector lengths, angles, and projections on the x-, y-, and z-axis, related to the intact unloaded configuration, and referenced to manual measurements. Vector lengths and projections significantly increased with loading and increasing ACL injury and indicated multidimensional changes. Manual measurements confirmed gradually increasing anterior tibial translation. Beyond imaging of ligament structure and functionality, stress MRI techniques can quantify joint stability to differentiate partial and complete ACL injury and, possibly, compare surgical procedures and monitor treatment outcomes.


Sign in / Sign up

Export Citation Format

Share Document