scholarly journals Comparison of Lithium-Ion Battery Cathode Materials and the Internal Stress Development

Author(s):  
Yixu Wang ◽  
Hsiao-Ying Shadow Huang

The need for development and deployment of reliable and efficient energy storage devices, such as lithium-ion rechargeable batteries, is becoming increasingly important due to the scarcity of petroleum. Lithium-ion batteries operate via an electrochemical process in which lithium ions are shuttled between cathode and anode while electrons flowing through an external wire to form an electrical circuit. The study showed that the development of lithium-iron-phosphate (LiFePO4) batteries promises an alternative to conventional lithium-ion batteries, with their potential for high energy capacity and power density, improved safety, and reduced cost. However, current prototype LiFePO4 batteries have been reported to lose capacity over ∼3000 charge/discharge cycles or degrade rapidly under high discharging rate. In this study, we report that the mechanical and structural failures are attributed to dislocations formations. Analytical models and crystal visualizations provide details to further understand the stress development due to lithium movements during charging or discharging. This study contributes to the fundamental understanding of the mechanisms of capacity loss in lithium-ion battery materials and helps the design of better rechargeable batteries, and thus leads to economic and environmental benefits.

2011 ◽  
Vol 1363 ◽  
Author(s):  
Yixu Wang ◽  
Hsiao-Ying Shadow Huang

ABSTRACTThe need for the development and deployment of reliable and efficient energy storage devices, such as lithium-ion rechargeable batteries, is becoming increasingly important due to the scarcity of petroleum. In this work, we provide an overview of commercially available cathode materials for Li-ion rechargeable batteries and focus on characteristics that give rise to optimal energy storage systems for future transportation modes. The study shows that the development of lithium-iron-phosphate (LiFePO4) batteries promises an alternative to conventional lithiumion batteries, with their potential for high energy capacity and power density, improved safety, and reduced cost. This work contributes to the fundamental knowledge of lithium-ion battery cathode materials and helps with the design of better rechargeable batteries, and thus leads to economic and environmental benefits.


2019 ◽  
Vol 7 (5) ◽  
pp. 2165-2171 ◽  
Author(s):  
Xingshuai Lv ◽  
Wei Wei ◽  
Baibiao Huang ◽  
Ying Dai

Siligraphenes including g-SiC2 and g-SiC3 can be promising candidates as anode materials for lithium-ion batteries.


Nanoscale ◽  
2021 ◽  
Author(s):  
Cong Liu ◽  
Shuang Zhang ◽  
Yuanyuan Feng ◽  
Xiaowei Miao ◽  
Gang Yang ◽  
...  

In this work, Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 (LMN-K/Nb) as a novel and high energy density cathode material is successfully synthesized and applied in lithium ion battery. Combining interlayer exchanging and elemental analysis, it...


2011 ◽  
Vol 56 (5) ◽  
pp. 2559-2565 ◽  
Author(s):  
Yanyi Liu ◽  
Dawei Liu ◽  
Qifeng Zhang ◽  
Danmei Yu ◽  
Jun Liu ◽  
...  

2017 ◽  
Vol 19 (15) ◽  
pp. 3442-3467 ◽  
Author(s):  
Daniele Di Lecce ◽  
Roberta Verrelli ◽  
Jusef Hassoun

Sustainable energy storage may be achieved by using advanced lithium-ion battery configurations with high energy, low cost and environmental compatibility.


2018 ◽  
Vol 6 (17) ◽  
pp. 7877-7886 ◽  
Author(s):  
Hucheng Song ◽  
Sheng Wang ◽  
Xiaoying Song ◽  
Huafeng Yang ◽  
Gaohui Du ◽  
...  

Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs).


2012 ◽  
Vol 95 (3) ◽  
pp. 283-314 ◽  
Author(s):  
Harish Kumar ◽  
Sundar Rajan ◽  
Ashok K. Shukla

Lithium-ion batteries are the systems of choice, offering high energy density, flexibility, lightness in weight, design and longer lifespan than comparable battery technologies. A brief historical review is given of the development of Li-ion rechargeable batteries, highlighting the ongoing research strategies, and highlighting the challenges regarding synthesis, characterization, electrochemical performance and safety of these systems. This work is primarily focused on development of Li-ion batteries from micro-structured to nanostructured materials and some of the critical issues namely, electrode preparation, synthesis, and electrochemical characterization. The purpose of this review is to act as a reference for future work in this area.


2021 ◽  
Vol 9 (1) ◽  
pp. 453-462
Author(s):  
Yonghuan Fu ◽  
Liewu Li ◽  
Shenghua Ye ◽  
Penggang Yang ◽  
Peng Liao ◽  
...  

Hierarchical nanoporous cobalt oxyhydroxide (CoOOH) nanosheets are prepared for use as an anode material in high energy density lithium-ion batteries.


2021 ◽  
Vol 35 (3) ◽  
pp. 1-6
Author(s):  
Soo-Gyeong Park ◽  
Sin-Woo Kim ◽  
Eui-Ju Lee

The lithium-ion battery is the most popular type of secondary battery because of its high energy density. It has been widely used in mobile power and energy storage systems. However, several accidents can occur in systems using lithium-ion batteries, and most of the reported losses have resulted from battery fires and explosions. In this study, a cone calorimeter experiment was performed to investigate the fire characteristics of lithium-ion batteries and assess their heat release rate (HRR), which is the most representative property for fire events. Fires involving cylindrical standard batteries consist of two combustion stages. The first burning stage is due to the package material and intercalated lithium of the battery, and the second stage is attributed to the thermal runaway reactions of the electrolyte. The second combustion stage has a greater peak HRR than the first stage and is accompanied by a violent explosion. In a comparison of the HRRs with the oxygen consumption rate, the HRRs measured on the basis of the mass loss rate show higher maximum values and extremely narrow heat release times.


Sign in / Sign up

Export Citation Format

Share Document