scholarly journals An Overview of Lithium-Ion Battery Cathode Materials

2011 ◽  
Vol 1363 ◽  
Author(s):  
Yixu Wang ◽  
Hsiao-Ying Shadow Huang

ABSTRACTThe need for the development and deployment of reliable and efficient energy storage devices, such as lithium-ion rechargeable batteries, is becoming increasingly important due to the scarcity of petroleum. In this work, we provide an overview of commercially available cathode materials for Li-ion rechargeable batteries and focus on characteristics that give rise to optimal energy storage systems for future transportation modes. The study shows that the development of lithium-iron-phosphate (LiFePO4) batteries promises an alternative to conventional lithiumion batteries, with their potential for high energy capacity and power density, improved safety, and reduced cost. This work contributes to the fundamental knowledge of lithium-ion battery cathode materials and helps with the design of better rechargeable batteries, and thus leads to economic and environmental benefits.

Author(s):  
Yixu Wang ◽  
Hsiao-Ying Shadow Huang

The need for development and deployment of reliable and efficient energy storage devices, such as lithium-ion rechargeable batteries, is becoming increasingly important due to the scarcity of petroleum. Lithium-ion batteries operate via an electrochemical process in which lithium ions are shuttled between cathode and anode while electrons flowing through an external wire to form an electrical circuit. The study showed that the development of lithium-iron-phosphate (LiFePO4) batteries promises an alternative to conventional lithium-ion batteries, with their potential for high energy capacity and power density, improved safety, and reduced cost. However, current prototype LiFePO4 batteries have been reported to lose capacity over ∼3000 charge/discharge cycles or degrade rapidly under high discharging rate. In this study, we report that the mechanical and structural failures are attributed to dislocations formations. Analytical models and crystal visualizations provide details to further understand the stress development due to lithium movements during charging or discharging. This study contributes to the fundamental understanding of the mechanisms of capacity loss in lithium-ion battery materials and helps the design of better rechargeable batteries, and thus leads to economic and environmental benefits.


Author(s):  
Umair Nisar ◽  
Nitin Muralidharan ◽  
Rachid Essehli ◽  
Ruhul Amin ◽  
Ilias Belharouak

2012 ◽  
Vol 85 (6) ◽  
pp. 879-882 ◽  
Author(s):  
E. N. Kudryavtsev ◽  
R. V. Sibiryakov ◽  
D. V. Agafonov ◽  
V. N. Naraev ◽  
A. V. Bobyl’

Nanoscale ◽  
2022 ◽  
Author(s):  
Zhiyu Zhou ◽  
Zexiang Chen ◽  
Yang Zhao ◽  
Huifang Lv ◽  
Hualiang Wei ◽  
...  

In recent years and following the progress made in lithium-ion battery technology, substantial efforts have been devoted to developing practical lithium-sulfur (Li–S) batteries for next-generation commercial energy storage devices. The...


2021 ◽  
Vol 1 (3) ◽  
pp. 49-56
Author(s):  
S.M. Zuyev ◽  
◽  
R.A. Maleyev ◽  
YU.M. Shmatkov ◽  
M.YU. Khandzhalov ◽  
...  

This article provides a comparative analysis of various energy storage devices. A detailed review and analysis of molecular energy storage units is carried out, their main characteristics and parame-ters, as well as their application areas, are determined. The main types of molecular energy storage are determined: electric double layer capacitors, pseudo capacitors, hybrid capacitors. Comparison of the characteristics of various batteries is given. The parameters of various energy storage devices are presented. The analysis of molecular energy storage devices and accumulators is carried out. Ttheir advantages and disadvantages are revealed. It has been shown that molecular energy storage or double layer electrochemical capacitors are ideal energy storage systems due to their high specific energy, fast charging and long life compared to conventional capacitors. The article presents oscillograms of a lithium-ion battery with a voltage of 10.8 V at a pulsed load current of 2A of a laptop with and without a molecular energy storage device, as well as oscil-lograms of a laptop with DVD lithium-ion battery with a voltage of 10.8 V with a parallel shutdown of a molecular energy storage device with a capacity of 7 F and without it. The comparative analysis shows that when the molecular energy storage unit with a 7 F capacity is switched on and off, transient processes are significantly improved and there are no supply voltage dips. The dependenc-es of the operating time of a 3.6 V 600 mAh lithium-ion battery at a load of 2 A for powering mo-bile cellular devices with and without a molecular energy storage are given. It is shown that when the molecular energy storage device is switched on, the battery operation time increases by almost 20%.


Sign in / Sign up

Export Citation Format

Share Document