Numerical Analysis to Predict the Temperature Distribution and Heat Transfer Rate From a Satellite Structure and Experimental Comparison

Author(s):  
Daniel T. Schwendtner ◽  
M. Ruhul Amin ◽  
David M. Klumpar

Due to their small size and other attractive features, nanosatellites are becoming popular in space applications. Experimental investigation of the thermal behavior of such a satellite can be conducted in a laboratory setup using a thermal vacuum chamber to mimic the conditions of outer space. A small, cost effective thermal vacuum system was desired for performing thermal vacuum testing on nanosatellites. Numerical calculations and laboratory testing were performed as part of the design of this thermal vacuum system. A numerical method using the finite element method was employed to determine the amount of heat flux needed to be applied at the bottom plate of a satellite to achieve a certain rate of temperature increase in the plate. The numerical analysis was performed on a 40.5 kg satellite structure to predict the heat rate per unit area through its bottom surface when it was cycled in the temperature range of −40°C to +80°C with a rate of temperature change from 1°C/min to 5°C/min. A time dependent increase in temperature on the bottom wall was used as a boundary condition. The rest of the satellite walls were assumed to be insulated. Contact resistances between the components of the satellite structure were neglected. Temperature and heat flux distributions on various walls of the satellite were computed and reported in the study. From the numerical results, a maximum heat flux rate of 3,332 W/m2 was calculated on the bottom plate for a temperature increase rate of 1.5°C/min of the plate. A similar experimental setup was tested under similar conditions as a comparison and as a method to validate the thermal system design. Experimental results indicated a heat flux rate of 17,094 W/m2 through a test satellite. The difference between the numerical and experimental results is attributed to geometric differences between the numerical satellite model and the experimental test structure.

2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


Solar Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 176-184
Author(s):  
F. Müller-Trefzer ◽  
K. Niedermeier ◽  
F. Fellmoser ◽  
J. Flesch ◽  
J. Pacio ◽  
...  

Author(s):  
Yiqi Cheng ◽  
Xinhua Wang ◽  
Waheed Ur Rehman ◽  
Tao Sun ◽  
Hasan Shahzad ◽  
...  

This study presents a novel cylindrical vane pump based on the traditional working principle. The efficiency of the cylindrical vane pump was verified by experimental validation and numerical analysis. Numerical analysis, such as kinematics analysis, was performed in Pro/Mechanism and unsteady flow-field analysis was performed using ANSYS FLUENT. The stator surface equations were derived using the geometric theory of the applied spatial triangulation function. A three-dimensional model of the cylindrical vane pump was established with the help of MATLAB and Pro/E. The kinematic analysis helped in developing kinematic equations for cylindrical vane pumps and proved the effectiveness of the structural design. The maximum inaccuracy error of the computational fluid dynamics (CFD) model was 5.7% compared with the experimental results, and the CFD results show that the structure of the pump was reasonable. An experimental test bench was developed, and the results were in excellent agreement with the numerical results of CFD. The experimental results show that the cylindrical vane pump satisfied the three-element design of a positive-displacement pump and the trend of changes in efficiency was the same for all types of efficiency under different operating conditions. Furthermore, the volumetric efficiency presented a nonlinear positive correlation with increased rotational velocity, the mechanical efficiency showed a nonlinear negative correlation, and the total efficiency first increased and then decreased. When the rotational velocity was 1.33[Formula: see text] and the discharge pressure was 0.68[Formula: see text], the total efficiency reached its maximum value.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2005 ◽  
Vol 46 (6) ◽  
pp. 881-892 ◽  
Author(s):  
Yu-Ching Yang ◽  
Haw-Long Lee ◽  
Eing-Jer Wei ◽  
Jenn-Fa Lee ◽  
Tser-Son Wu

2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2018 ◽  
Vol 8 (1) ◽  
pp. 307-313 ◽  
Author(s):  
Michał Stanclik

Abstract This paper presents a new brush seal construction idea. It was shown that it is possible to use bimetallic elements for the construction of the brush seal, which have a thermoregulatory function by relieving a contact area between bristles and a shaft surface reducing frictional heat flux. This should improve the durability of the seal by diminishing the heat load and significantly decreases the temperature of the seal during the startup/ shutdown. This article shows a simplified construction of the concept brush seal as well as numerical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document