Design and Computational Validation of In-Line Bare Tube Economizer for a 210 MW Pulverized Coal Fired Boiler

2013 ◽  
Author(s):  
P. R. Dhamangaonkar ◽  
Abhishek Deshmukh ◽  
Santosh Pansare ◽  
M. R. Nandgaonkar

One of the pulverized coal fired thermal power plants in India intended to find the root cause of frequent boiler tube failures in three 210 MW units. Operation & Maintenance history and feedback from plant O&M team revealed that economizer tube failure was a frequent cause of forced outage. The plant under study used CFS (continuous fin surface) economizer with staggered tube arrangement in the 210 MW units. CFS staggered tube economizers originally appealed to many plant designers because the tortuous path created for the flue gas, enhanced heat absorption and the fins could capture heat and transfer it to the tubing. This made the CFS economizer less costly and easy for installation in a relatively small space. There is increasing use of lower quality high ash coals over the past few decades. Due to this fact an advantage of the CFS economizer design became a disadvantage. The narrow spacing in the tubes proved more susceptible to plugging and fly ash erosion. Literature study and the root cause analysis suggested that CFS staggered arrangement of economizer could be one of the prominent reason of failure of economizer tube bundle due to fly ash erosion. Flue gas flow simulation also highlighted that there is increase in velocity of flue gases across the economizer. A bare tube in-line configuration in place of existing CFS economizer was an alternative. To recommend an alternate economizer as solution, the merits of an in-line bare tube economizer were studied. Bare tubes arranged in-line are most conservative in hostile environments with high ash content, are least likely to plug, and have the lowest gas-side resistance per unit of heat transfer. A bare tube in-line economizer that can replace the existing finned tube economizer in the available space while meeting the existing design & performance parameters is recommended. An attempt was made to model & analyze the new economizer using computational fluid dynamics (CFD) tools in order to get firsthand experience and validate the results obtained using manual calculations. With limited computational resources and not so fine meshing, the performed CFD model analysis showed the expected trend but did not completely match the results.

2021 ◽  
Vol 7 (1) ◽  
pp. 26-31
Author(s):  
Taras Kravets ◽  
◽  
Yevhen Miroshnychenko ◽  
Andrii Kapustianskyi ◽  
◽  
...  

Boiler units at Ukrainian thermal power plants need to be modernized or replaced in the short run, as this is important for the national energy security. The authors determined one of possible ways to improve the efficiency indicators of coal-fired boiler units and power generating units as a whole up to the values exceeding the design ones. This variant of improvement consists in abandoning the technology of using flue gas as drying agent in pulverized coal systems and replacing it with direct discharge of the gas flow into the boiler furnace. Numerous computations were carried out to study the change of efficiency indicators and manoeuvrability of power generating units due to the replacement of the ball mill pulverizing system using flue gases for coal drying with the scheme including ball-and-race mills that use hot air as drying agent.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 207
Author(s):  
Chao Cheng ◽  
Hongming Fu ◽  
Jun Wu ◽  
Heng Zhang ◽  
Haiping Chen

Ceramic membrane method for moisture recovery from flue gas of thermal power plants is of considerable interest due to its excellent selection performance and corrosion resistance. However, manufacturing costs of commercial ceramic membranes are still relatively expensive, which promotes the development of new methods for preparing low-cost ceramic membranes. In this study, a method for the preparation of porous ceramic membrane supports is proposed. Low-cost fly ash from power plants is the main material of the membrane supports, and talcum is the additive. The fabrication process of the ceramic membrane supports is described in detail. The properties of the supports were fully characterized, including surface morphology, phase composition, pore diameter distribution, and porosity. The mechanical strength of the supports was measured. The obtained ceramic membrane supports displays a pore size of about 5 μm and porosity of 37.8%. Furthermore, the water recovery performance of the supports under different operating conditions was experimentally studied. The experimental results show that the recovered water flux varies with operating conditions. In the study, the maximum recovered water flux reaches 5.22 kg/(m2·h). The findings provide a guidance for the ceramic membrane supports application of water recovery from flue gas.


Author(s):  
I.A. Volchyn ◽  
O.M. Kolomiets ◽  
V.A. Raschepkin

The mathematical modeling is performed of the efficiency of flue gas cleaning from fly ash particles of coal-fired thermal power plants, upon installation of a preliminary flue gas cleaning system that consists of a louvered dust concentrator and a battery cyclone, with the recirculation of flue gas from the battery cyclone outlet to the electrostatic precipitator pre-chamber. Based on the available experimental data for the fractional composition of fly ash downstream the boilers of coal-fired TPPs, the size distribution functions were calculated, of fly ash particles at each stage of the preliminary dust-cleaning process, as well as concentrations and modified particle size distributions, to be further used as the input data for designing options and scope of the reconstruction of existing electrostatic precipitators. Bibl. 13, Fig. 3.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3860
Author(s):  
Mária Hagarová ◽  
Milan Vaško ◽  
Miroslav Pástor ◽  
Gabriela Baranová ◽  
Miloš Matvija

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler’s thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.


2021 ◽  
Vol 11 (9) ◽  
pp. 3910
Author(s):  
Saba Shirin ◽  
Aarif Jamal ◽  
Christina Emmanouil ◽  
Akhilesh Kumar Yadav

Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.


2009 ◽  
Vol 6 (2) ◽  
pp. 511-517 ◽  
Author(s):  
S. Sarojini ◽  
S. Ananthakrishnasamy ◽  
G. Manimegala ◽  
M. Prakash ◽  
G. Gunasekaran

Fly ash is an amorphous ferroalumino silicate, an important solid waste around thermal power plants. It creates problems leading to environmental degradation due to improper utilization or disposal. However, fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of soils and is a source of readily available plant macro and micronutrients when it is used with biosolids. Supply of nutrients from fly ash with biosolids may enhance their agricultural use. The growth and reproduction ofEisenia fetidawas studied during vermicomposting of fly ash with cowdung and pressmud in four different proportions (T1,T2,T3& T4) and one controli.e.,cow dung and pressmud alone. The growth, cocoon and hatchlings production were observed at the interval of 15 days over a period of 60 days. The maximum worm growth and reproduction was observed in bedding material alone. Next to that the T1was observed as the best mixture for vermiculture.


1999 ◽  
Vol 09 (03n04) ◽  
pp. 417-422 ◽  
Author(s):  
V. VIJAYAN ◽  
S. N. BEHERA

Fly ash is a major component of solid material generated by the coal-fired thermal power plants. In India the total amount of fly ash produced per annum is around 100 million tonnes. Fly ash has a great potential for utilization in making industrial products such as cement, bricks as well as building materials, besides being used as a soil conditioner and a provider of micro nutrients in agriculture. However, given the large amount of fly ash that accumulate at thermal power plants, their possible reuse and dispersion and mobilization into the environment of the various elements depend on climate, soils, indigenous vegetation and agriculture practices. Fly ash use in agriculture improved various physico-chemical properties of soil, particularly the water holding capacity, porosity and available plant nutrients. However it is generally apprehended that the application of large quantity of fly ash in fields may affect the plant growth and soil texture. Hence there is a need to characterize trace elements of fly ash. The results of trace element analysis of fly ash and pond ash samples collected from major thermal power plants of India by Particle Induced X-ray Emission (PIXE) have been discussed.


Sign in / Sign up

Export Citation Format

Share Document