Binary Biodiesel Blend Endurance Characteristics in a Compression Ignition Engine

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

The results obtained on wear assessment from a compression ignition (CI) engine fueled with a blend of 70% amla seed biodiesel (AB) and 30% eucalyptus oil (EU) on volume basis (called AB70EU30). The results showed stable engine operation and good operability of the engine-fuel system with the binary biodiesel fuel blend. The feasibility of this blend over a long-term endurance tests was explored. The specific assessment examination included the fate of cylinder head, pump plunger, injector nozzle, and piston crown, which affects the engine performance and engine life. The experimental results revealed better tribological performance characteristics with the binary fuel blend as compared to contemporary diesel fuel. No specific problem was encountered during the long-term endurance tests with the binary fuel blend using the modified engine parameters. The results show that the binary fuel mixture offers good potential for use as diesel fuel in CI engines while maintaining good performance and endurance.

2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

This paper presents lubricating oil performance in a compression ignition (CI) engine fueled with a binary fuel blend of 70% aamla seed oil biodiesel and 30% eucalyptus oil (EU) on volume basis. This blended fuel was stable and congruent with engine-fuel system. Initially, the engine was operated with normal diesel fuel as per standard endurance test. The same endurance test was performed with the above binary biodiesel blended fuel in the engine under somewhat modified engine operational condition. The lubricating oil was examined at a specified interval to evaluate the impact of the fuel on lubricating oil properties. Quantification of various metal debris concentrations was carried out using inductive coupled plasma atomic emission spectroscopy. After experimentation, the lubricating oil samples were analyzed using analytical ferrography that showed lower wear debris concentrations from binary biodiesel blend than diesel fuel operated engine. The better lubricating property of binary biodiesel blended fuel resulted in lower wear and improved performance of engine parts. Relatively low wear and concentrations of all metal wear were found in the lubricating oil with binary biodiesel blended fuel engine revealed better performance of engine with this fuel blend. No technical problem was encountered during the long-term endurance tests with the binary biodiesel blended fuel under modified engine parameters.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

Fossil fuel consumption provides a negative impact on the human health and environment in parallel with the decreased availability of this valuable natural resource for the future generations to use as a source of chemical energy for all applications in energy, power, and propulsion. The diesel fuel consumption in the transport sector is higher than the gasoline in most developing countries for reasons of cost and economy. Biodiesel fuel offers a good replacement for diesel fuel in compression ignition (CI) diesel engines. Earlier investigations by the authors revealed that a blend of 70% amla seed oil biodiesel and 30% eucalyptus oil (AB70EU30) is the favorable alternative renewable fuel blend that can be used as a fuel in diesel engines. With any fuel, air/fuel mixing and mixture preparation impact efficiency, emissions, and performance in CI engines. Minor adjustments in engine parameters to improve air/fuel mixing and combustion are deployable approaches to achieve good performance with alternative fuel blends in CI engines. This paper provides the role of a minor modification to engine parameters (compression ratio, injection timing, and injection pressure) on improved performance using the above mixture of binary fuel blends (AB70EU30). The results showed that the use of AB70EU30 in modified engine resulted in higher brake thermal efficiency and lower brake specific fuel consumption compared to normal diesel for improved combustion that also resulted in very low tailpipe emissions.


2013 ◽  
Author(s):  
Ambarish Datta ◽  
Bijan Kumar Mandal

The enhanced use of diesel fuel and the strict emission norms for the protection of environment have necessitated finding sustainable alternative and relatively green fuels for compression ignition engines. This paper presents a brief review on the current status of biodiesel production and its performance and emission characteristics as compression ignition engine fuel. This study is based on the reports on biodiesel fuels published in the current literature by different researchers. Biodiesel can be produced from crude vegetable oil, non-edible oil, waste frying oil, animal tallow and also from algae by a chemical process called transesterification. Biodiesel is also called methyl or ethyl ester of the corresponding feed stocks from which it has been produced. Biodiesel is completely miscible with diesel oil, thus allowing the use of blends of mineral diesel and biodiesel in any percentage. Presently, biodiesel is blended with mineral diesel and used commercially as fuel in many countries. Biodiesel fueled CI engines perform more or less in the same way as that fueled with the mineral diesel. Exhaust emissions are significantly improved due the use of biodiesel or blends of biodiesel and mineral diesel. The oxides of nitrogen are found to be greater in exhaust in case of biodiesel compared to mineral diesel. But the higher viscosity of biodiesel also enhances the lubricating property. Biodiesel being an oxygenated fuel improves combustion.


Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Bohuslav Peterka ◽  
Miroslav Müller ◽  
Michal Holubek ◽  
...  

Liquid biofuels for compression ignition engines are often based on vegetable oils. In order to be used in compression ignition engine the vegetable oils have to be processed because of their high viscosity or it is also possible to use vegetable oils in fuel blends. In order to decrease the viscosity of the fuel blends containing crude vegetable oil the alcohol-based fuel admixtures can be used. The paper describes the effect of rapeseed oil–diesel fuel–n-butanol blends on combustion characteristics and solid particles production of turbocharged compression ignition engine. The 10% and 20% concentrations of n-butanol in the fuel blend were measured and analysed. The engine Zetor 1204, located in tractor Zetor Forterra 8641 with the power of 60kW and direct injection was used for the measurement. The engine was loaded through power take off shaft of the tractor using mobile dynamometer MAHA ZW500. The measurement was carried out in stabilized conditions at 20%, 60% and 100% engine load. The engine speed was kept at 1950 rpm. Tested fuel blends showed lower production of solid particles than diesel fuel and lower peak cylinder pressure and with increasing concentration of n-butanol in the fuel blend the ignition delay was prolonged and premixed phase of combustion was increased.


Author(s):  
Purnanand V. Bhale ◽  
Nishikant V. Deshpande ◽  
Piyush N. Deshpande

The gradual depletion of world petroleum reserves, increases in prices of petroleum based fuels and environmental pollution due to exhaust emissions have encouraged studies to search for alternative fuels. Biodiesel is an alternative diesel fuel consisting of alkyl monoesters of fatty acids derived from vegetable oils. It has been the focus of considerable amount of recent research because it is renewable and reduces the emission of some pollutants. The desirability of developing biodiesel from different tree borne oil seeds and decreasing the dependency on petroleum based fuels has been discussed by many over the last few decades. However some of the important issues like compatibility of biodiesel with the crankcase lubricating oil, thermal stability of lubricating oil with biodiesel usage, changes in physical and chemical properties of lubricating oil with biodiesel etc. have not been sufficiently investigated. This needs to be addressed in order to ensure the long term acceptability of biodiesel in an existing family of diesel engines. In the present work these issues have been addressed. For this purpose engine endurance tests were conducted on CI engines. Two new single cylinder four stroke CI engines were operated for 512 hours each for diesel and 100% biodiesel fuel. The endurance tests were conducted as per BIS 10000 part IX norms. Biodiesel from Jatropha oil was prepared in-house using transesterification process. The sample of lubricating oil was collected through a one way valve connected to the crankcase sump after every 128 hours intervals. Thermograviometric analysis (TGA) was used to evaluate the thermal stability of lubricating oil samples obtained from both the engines. The thermal decomposition of lubricating oil samples were measured as a function of various reaction parameters such as temperature, time and heating rates. This TGA test involves a weight change as the oil was heated. The weight loss data of the sample was logged using the in situ computer. Early decomposition of biodiesel fueled engine lubricating oil was observed as compared to diesel fueled engine lubricating oil. The changes in viscosity of lubricating oil were also monitored during the endurance test and discussed in detail. A higher level of crank case dilution was observed in case of biodiesel as compared to diesel.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jean Paul Gram Shou ◽  
Marcel Obounou ◽  
Rita Enoh Tchame ◽  
Mahamat Hassane Babikir ◽  
Timoléon Crépin Kofané

Compression ignition engine modeling draws great attention due to its high efficiency. However, it is still very difficult to model compression ignition engine due to its complex combustion phenomena. In this work, we perform a theoretical study of steam injection being applied into a single-cylinder four-strokes direct-injection and naturally aspirated compression ignition engine running with diesel and biodiesel fuels in order to improve the performance and reduce NO emissions by using a two-zone thermodynamic combustion model. The results obtained from biodiesel fuel are compared with the ones of diesel fuel in terms of performance, adiabatic flame temperatures, and NO emissions. The steam injection method could decrease NO emissions and improve the engine performances. The results showed that the NO formation characteristics considerably decreased and the performance significantly increased with the steam injection method. The relative errors for computed nitric oxide concentration values of biodiesel fuel and diesel fuel in comparison to the measured ones are 2.8% and 1.6%, respectively. The experimental and theoretical results observed show the highly satisfactory coincidences.


Fuel ◽  
2013 ◽  
Vol 107 ◽  
pp. 409-418 ◽  
Author(s):  
Lennox Siwale ◽  
Lukács Kristóf ◽  
Torok Adam ◽  
Akos Bereczky ◽  
Makame Mbarawa ◽  
...  

Author(s):  
Myung Yoon Kim ◽  
Seung Hyun Yoon ◽  
Jin Woo Hwang ◽  
Chang Sik Lee

An experimental investigation was performed on the effect of engine speed, exhaust gas recirculation (EGR), and boosting intake pressure on the particulate size distribution and exhaust gas emissions in a compression ignition engine fueled with biodiesel derived from soybean. The results obtained by biodiesel fuel were compared to those obtained by petroleum diesel fuel with a sulfur content of 16.3ppm. A scanning mobility particulate sizer was used for size distribution analysis, and it measured mobility equivalent particulate diameter in the range of 10.4–392.4nm. In addition to the size distribution of the particulates, exhaust emissions, such as oxides of nitrogen (NOx), hydrocarbon, and carbon monoxide emissions, and combustion characteristics under different engine operating parameters were investigated. The engine operating parameters in terms of engine speed, EGR, and intake pressure were varied to investigate their individual impacts on the combustion and exhaust emission characteristics. As the engine speed was increased for both fuels, the larger size particulates, which dominantly contribute particulate mass, were increased; however, total numbers of particulate were reduced. Compared to diesel fuel, the combustion of biodiesel fuel reduced particulate concentration of relatively larger size where most of the particulate mass is found. Moreover, dramatically lower hydrocarbon and carbon monoxide emissions were found in the biodiesel-fueled engine. However, the NOx emission of the biodiesel-fueled diesel engine shows slightly higher concentration compared to diesel fuel at the same injection timing. EGR significantly increased the larger size particulates, which have diameter near the maximum measurable range of the instrument; however, the total number of particulates was found not to significantly increase with increasing EGR rate for both fuels. Boosting intake pressure shifted the particulate size distribution to smaller particulate diameter and effective reduction of larger size particulate was found for richer operating conditions.


Sign in / Sign up

Export Citation Format

Share Document