Computer-Aided Manufacturing (CAM) Software Development for Laser Machining

Author(s):  
Abdolreza Bayesteh ◽  
Farid Ahmad ◽  
Martin B. G. Jun

A novel computer-aided manufacturing (CAM) software system is proposed for laser ablation machining process. The algorithms and prototype software system is designed to offer efficient optimization of tool path for controlled delivery of laser energy into work-piece. The software simplifies part program creation and maintains constant velocity of the sample stage for each segment of a complex tool trajectory. These features enable efficient deposition of laser energy into the work piece and therefore, reduction in heat-affected zone is expected in laser ablation based micromachining. The reported software provides fast modification of tool path, automatic and efficient sequencing of path elements in a complicated tool trajectory, location of reference point and automatic fixing of geometrical errors in imported drawing exchange files (DXF) or DWG format files.

1988 ◽  
Vol 4 (04) ◽  
pp. 280-285
Author(s):  
R. V. Shields

Great emphasis has been attached to the achievement of productivity and producibility benefits through the application of computer-aided design and computer-aided manufacturing (CAD/CAM) technologies. To ensure the achievement of these benefits, it is important that the end user have appropriate software and be able to use it to his advantage. The proper procurement, customization, installation, training, and implementation of software can play a significant role in the effectiveness of CAD/CAM.


2011 ◽  
Vol 188 ◽  
pp. 705-710 ◽  
Author(s):  
Bing Bing Yan ◽  
G.J. Chen ◽  
J.F. Shuai ◽  
D.C. Huang

The design, modeling and simulation are one of the key technologies of CAD/CAM software system. The mathematical model of the CAD/CAM system for machining spatial surface was given firstly. After the design idea of the CAD/CAM system was describe in detail, the workflow of the CAD/CAM software system was illustrated, and then data exchange mechanism was determined and detailed steps were given simultaneously. Under MFC framework, the CAD/CAM software system was finished using OpenGL, and the configuration and machining process simulation were carried out. All these works provide an effective approach to raising the productivity and precision of machining spatial curve surface part by WEDM-HS.


Author(s):  
Jun Wang ◽  
Zhigang Wang ◽  
Weidong Zhu ◽  
Yingfeng Ji

This paper describes a method of machining feature recognition from a freeform surface based on the relationship between unique machining patches and critical points on a component’s surface. The method uses Morse theory to extract critical surface points by defining a scalar function on the freeform surface. Features are defined by region growing between the critical points using a tool path generation algorithm. Several examples demonstrate the efficiency of this approach. The recognized machining features can be directly utilized in a variety of downstream computer aided design/computer aided manufacturing (CAM) applications, such as the automated machining process planning.


2011 ◽  
Vol 201-203 ◽  
pp. 40-43
Author(s):  
Jian Sheng Liu ◽  
Hai Ning Tu ◽  
Fang Chen Xia ◽  
Jun Xing Xiong

To satisfy the manufacturing requirement of tyre tread pattern mold, the problem of machining region planning in the computer aided manufacturing of tyre mold is introduced. And it is analyzed that the core technology is the definition of inner and outer contours for machining region planning and tool-path planning. According to the defect of traditional constructed way of machining region, an auto recognition method of inner and outer contour is studied based on the inclusive test method.The detail step of the method is illustrated.Thinking about the special condition of the method, corresponding strategy is given. This method is applied in the computer aided manufactuing of tyre tread mold, by which machining region planning can be solved effectively.


Author(s):  
R. Hedrick ◽  
R. J. Urbanic ◽  
Ashley Novak

Computer-aided manufacturing (CAM) software is used to develop a process plan, which consists of an operations list, tool paths, tooling, process parameters, and depending on the system, material handling operations. Upon completing the development of a process plan, setup sheets are generated for the personnel involved in the setup, production, testing, and product validation activities for a product. Typically, this documentation is in a hardcopy format, or is a static electronic document, and the direction of the communication is unidirectional — from the process planner to the support personnel. With the ubiquitous communications tools available to individuals today, a more sophisticated approach should be taken to transmit, store, and communicate changes to and from the shop floor. Presently, standard setup documentation consists of the project information utilized for the developed process plan. Pictures such as screen captures of the tool path, virtual verification images, and physical elements such as specialty tools may be included. However, modifications are made continuously to improve the cycle time, quality, or to adjust for other product or process changes. This research focuses on the development of interactive setup sheets that utilize existing desktop CAD/CAM software and mobile technologies, with the potential for leveraging the advantages of manufacturing cloud computing. Videos, links to additional documentation, and the ability to edit a subset of process parameters such as a tool diameter are incorporated. The operator is able to physically change tools or other key process setup information, and then send the information to the CAM system in order to regenerate the updated tool paths and documentation. Complementing the flexible, agile, and reconfigurable paradigms is the communication flexibility provided by fast wireless networks along with, cloud computing resources that can accessed with mobile devices, which are ubiquitous in today’s society. This technology that has not yet been heavily employed in the manufacturing environment, and research leveraging these new tools need to be explored.


Author(s):  
Joseph E. Petrzelka ◽  
Matthew C. Frank

This paper examines the phenomenon of emergent structures that occur in the transient stock material during multi-axis rough machining from a plurality of fixed orientations. Taking the form of thin webs and strings, emergent structures are stock material conditions that can lead to catastrophic failure during machining, even when tool path verification is successful. We begin by discussing the motivation for use of fixed orientations in multi-axis machining using multiple automated setups via rotary axes, which enables fast processing and ‘first part correct’ machining. Next, we demonstrate how unintended emergent structures occur in this paradigm of machining and can lead to catastrophic failure of the tool or work piece. Our original work focuses on the problem of geometric detection of these structures during process planning and prior to tool path planning, to the end of altogether avoiding emergent structure formation. To quickly simulate the machining process, we present an object-space method for determining the transient state of stock material based on the inverse tool offset. To identify emergent structures within this transient stock state, we propose a metric based on the medial axis transformation. Finally, we present our implementation of these methods and demonstrate realtime computation appropriate for an optimization scheme to eliminate emergent structures. Our methods provide consistent and logical results, as demonstrated with several freeform component examples. This work enables the development of robust algorithms for autonomous tool path planning and machining in multi-axis environments.


2021 ◽  
pp. 47-51
Author(s):  
Peter Tirpak ◽  
Peter Michalik ◽  
Jozef Macej

The article deals with the use of CAD / CAM software Autodesk Inventor in the production of the shaft. CAM programming is very important in the field of engineering because it speeds up the process of manufacturing parts and enables the production of their complex shapes. The article describes the programming of turning, milling, drilling and threading of the shaft. The programming was followed by the production of the shaft. The manufactured shaft met the dimensions according to the technical documentation and was subsequently used in the assembly.


2006 ◽  
Vol 129 (2) ◽  
pp. 400-406 ◽  
Author(s):  
R. Molina-Carmona ◽  
A. Jimeno ◽  
R. Rizo-Aldeguer

Background. Tool path generation problem is one of the most complexes in computer aided manufacturing. Although some efficient algorithms have been developed to solve it, their technological dependency makes them efficient in only a limited number of cases. Method of Approach. Our aim is to propose a model that will set apart the geometrical issues involved in the manufacturing process from the purely technology-dependent physical issues by means of a topological system. This system applies methods and concepts used in mathematical morphology paradigms. Thus, we will obtain a geometrical abstraction which will not only provide solutions to typically complex problems but also the possibility of applying these solutions to any machining environment regardless of the technology. Presented in the paper is a method for offsetting any kind of curve. Specifically, we use parametric cubic curves, which is one of the most general and popular models in computer aided design (CAD)/computer aided manufacturing (CAM) applications. Results. The resulting method avoids any constraint in object or tool shape and obtains valid and optimal trajectories, with a low temporal cost of O(n∙m), which is corroborated by the experiments. It also avoids some precision errors that are present in the most popular commercial CAD/CAM libraries. Conclusions. The use of morphology as the base of the formulation avoids self-intersections and discontinuities and allows the system to machine free-form shapes using any tool without constraints. Most numerical and geometrical problems are also avoided. Obtaining a practical algorithm from the theoretical formulation is straightforward. The resulting procedure is simple and efficient.


Author(s):  
Muhammad Abdulrahim Rabbani Md Sharizam ◽  
◽  
Saiful Bahri Mohamed ◽  
Tengku Mohd Shahrir Tengku Sulaiman ◽  
Zammeri Abd Rahman ◽  
...  

STEP is a general data format that observes the international standard ISO 10303-21. STEP means Standard for the Exchange of Product model data. It consists of the 3D geometry of a computer-aided design (CAD) model in the configuration of boundary representation (B-rep). By extracting, refining and decoding the geometric data correctly, the data can be utilized for writing G-code for Computer Numerical Control (CNC) machining application. Usually G-codes can either be manually generated by skilled machinists or automatically generated by computer-aided manufacturing (CAM) software. However, manually generated G-code is inefficient and susceptible to error. Meanwhile automated generation G-code requires significant setup cost. This paper describes the design and development of an integrated interface system, an instrument aimed to be used to analyze STEP files and generate machining tool path based on ISO 6983 format. This developed interface reduces the need for high setup cost as well as eliminates human limitations. The interface at present is able of detecting circular machining features on the workpiece. Circular machining features are created by 3D modelling software and retained as STEP file. The STEP file which contains geometrical data is then uploaded to the interface system as an input file which is structurally analyzed and processed. Finally, the ideal machining tool path in the G Code format is proposed and generated. By bypassing the CAM software and its proprietary post processor, the outcome of this research is important to enhance compatibility between different CNC machine systems


Sign in / Sign up

Export Citation Format

Share Document