Verification of the Vibration Characteristics of a Reciprocating Compressor in Operation and the Proposal of the Model Parameters Estimation Method

Author(s):  
Yoshifumi Mori ◽  
Takashi Saito ◽  
Katsuhide Fujita

Vibration characteristics of a reciprocating compressor are discussed. To investigate the frequency characteristics in the operation of unhealthy and healthy, we employed the proposed model, which includes stiffness characters about both the connecting and the sliding parts. Expressing the motion of the reciprocating compressor as a rigid body model with eleven degrees of freedom, we numerically investigated the frequency characteristics in operation and the natural vibration characteristics based on a locally linearized method. To examine the frequency characteristics, we carried out vibration tests using a small experimental machine and the eigenvalue analysis based on the proposed model. Comparing the analytical results with experimental results, we found that the proposed model could simulate the fundamental frequency characteristics in operation and the natural modes. Eigenvalue analysis shows that the natural frequencies and modes for a reciprocating compressor depend upon the angle of the crankshaft. In the proposed model, it can express the dominant frequencies occurring during operation and the natural vibration characteristics.

2019 ◽  
Vol 9 (15) ◽  
pp. 3168
Author(s):  
Bingbing San ◽  
Yunlong Ma ◽  
Zhi Xiao ◽  
Dongming Feng ◽  
Liwei Yin

This work investigates the natural vibration characteristics of free-form shells when considering the influence of uncertainties, including initial geometric imperfection, shell thickness deviation, and elastic modulus deviation. Herein, free-form shell models are generated while using a self-coded optimization algorithm. The Latin hypercube sampling (LHS) method is used to draw the samplings of uncertainties with respect to their stochastic probability models. ANSYS finite element (FE) software is adopted to analyze the natural vibration characteristics and compute the natural frequencies. The mean values, standard deviations, and cumulative distributions functions (CDFs) of the first three natural frequencies are obtained. The partial correlation coefficient is adopted to rank the significances of uncertainty factors. The study reveals that, for the free-form shells that were investigated in this study, the natural frequencies is a random quantity with a normal distribution; elastic modulus deviation imposes the greatest effect on natural frequencies; shell thickness ranks the second; geometrical imperfection ranks the last, with a much lower weight than the other two factors, which illustrates that the shape of the studied free-form shells is robust in term of natural vibration characteristics; when the supported edges are fixed during the shape optimization, the stochastic characteristics do not significantly change during the shape optimization process.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Takeshi Tokunaga ◽  
Koji Mori ◽  
Hiroko Kadowaki ◽  
Takashi Saito

Abstract A gradient of a blood flow velocity on the surface of a blood vessel is one of the clinical medicine concerns from the view point of prevention of the arteriosclerosis. In previous study, we formulated a relationship between the pressure and a flow velocity based on the coupled wave theory of elastic pipes and Newtonian fluids [1]. In addition, a flow velocity distribution and a wall shear stress are estimated by using the blood pressure data, which are non-invasively obtained by the tonometry method. This method is quasi-analytical method to apply the coupled wave theory for industrial flow field inside steel pipes proposed by Urata [4] to blood vessel, and has the advantage of systematic estimator compared with the numerical calculation. However, the coupled wave theory has applied to the elastic pipes that were assumed to be infinitely long. In addition, a single wave was assumed to be dominant within the elastic pipes and the Newtonian fluids. Therefore, in order to apply various length vessels in clinical field, the boundary of the blood vessels that varies from site to site, and the natural vibration characteristics that depend on the boundary conditions, could not be reflected in the wall shear stress estimation. In general, in order to solve the forced vibration with the boundary condition, it is necessary to clarify natural frequency and natural mode as natural vibration characteristics of structure. In this study, we introduce the spring supported elastic pipes to the coupled wave theory and formulated a relationship between the natural vibration characteristics and the boundary conditions. In this proposed method, the spring-supported elastic pipe has a feature that can be treated as an arbitrary boundary condition of an artery by giving an appropriate spring coefficients. Therefore, it is easy to apply to various types of blood vessels clinically. By investigating the natural vibration characteristics of blood vessels that varies from site to site, it may be possible to clarify fluctuations of blood flow in response to blood pressure with some frequency-bands. In addition, natural angular frequencies and natural modes of the spring supported elastic pipes and the Newtonian fluids were estimated for general blood vessel based on the coupled wave theory. In the result, the natural angular frequencies and the natural modes that reflect the clinical vibration characteristics to some extent can be estimated. On the other hand, particular modes may not reflect boundary condition, and further examination of the relationship between natural vibration characteristics and boundary condition is needed.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1578 ◽  
Author(s):  
Hazem Al-Mofleh ◽  
Ahmed Z. Afify ◽  
Noor Akma Ibrahim

In this paper, a new two-parameter generalized Ramos–Louzada distribution is proposed. The proposed model provides more flexibility in modeling data with increasing, decreasing, J-shaped, and reversed-J shaped hazard rate functions. Several statistical properties of the model were derived. The unknown parameters of the new distribution were explored using eight frequentist estimation approaches. These approaches are important for developing guidelines to choose the best method of estimation for the model parameters, which would be of great interest to practitioners and applied statisticians. Detailed numerical simulations are presented to examine the bias and the mean square error of the proposed estimators. The best estimation method and ordering performance of the estimators were determined using the partial and overall ranks of all estimation methods for various parameter combinations. The performance of the proposed distribution is illustrated using two real datasets from the fields of medicine and geology, and both datasets show that the new model is more appropriate as compared to the Marshall–Olkin exponential, exponentiated exponential, beta exponential, gamma, Poisson–Lomax, Lindley geometric, generalized Lindley, and Lindley distributions, among others.


2005 ◽  
Vol 21 (2) ◽  
pp. 169-184 ◽  
Author(s):  
Myung Jo Jhung ◽  
Young Hwan Choi ◽  
Hho Jung Kim ◽  
Kyeong Hoon Jeong

2015 ◽  
Vol 83 (3) ◽  
Author(s):  
Gangli Chen ◽  
Xiaoting Rui ◽  
Fufeng Yang ◽  
Jianshu Zhang

Due to the mass consumption and engine thrust of a flexible missile during the powered phase flight, its natural vibration characteristics may be changed significantly. The calculation of natural frequencies and mode shapes plays an important role in the structural design of the missile. Aiming at calculating the natural vibration characteristics of the missile rapidly and accurately, a nonuniform beam subjected to an engine thrust is used to model the free vibration of the missile and Riccati transfer matrix method (RTMM) is adopted in this paper. Numerical results show that the natural frequencies of a typical single stage flexible missile are increased unceasingly in its powered phase, and its mode shapes are changed a lot. When the presented methodology is used to study the natural vibration characteristics of flexible missiles, not only the mass, stiffness, and axial compressive force distributions are described realistically but also numerical stability, high computation speed, and accuracy are achieved.


Sign in / Sign up

Export Citation Format

Share Document