Effect of the Interface Mixing Layer on the Thermal Boundary Conductance of Metal-Organic Semiconductor Thin Film–Numerical Study by Lattice Boltzmann Method

Author(s):  
Xinyu Wang ◽  
Paddy K. L. Chan

The interface mixing of metal-organic semiconductor layers plays a remarkable role in thermal transport in organic electronic devices. Here we apply the lattice Boltzmann method (LBM) to simulate the effect of the interface mixing on thermal boundary conductance (TBC) of Ag-pentacene and Ag-CuPc thin films. The spring constant-dependent transmission coefficient is considered in the simulation to investigate the effect of the interfacial bonding on TBC. The simulation result is compared with the experimental result of Ag-CuPc thin film obtained by other research group. By varying the thickness and composition of the intermixing layer, a significant variation of the thermal boundary conductance of the thin film is observed. The total thermal boundary conductance will increase with the spring constant per area. The increase of the thickness of the intermixing layer leads to the downward trend of the total thermal boundary conductance and it is attributed to the enhancement of the intrinsic thermal resistance of the intermixing layer. These findings suggest the interfacial bonding, thickness and composition of the metal-organic intermixing layer should be carefully controlled to achieve the desired thermal boundary conductance.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jinchao He ◽  
Hao Yuan ◽  
Xiaolong He ◽  
Chunhang Xie ◽  
Haonan Peng ◽  
...  

The pseudopotential lattice Boltzmann method (LBM) with a tunable surface tension term is applied to study a droplet impact on a moving thin film. The Re effects of dimensionless parameters on the upstream and downstream crown evolution are studied, including Reynolds number (Re), Weber number (We), liquid film thickness, and horizontal velocity of the liquid film. The movement of the liquid film causes the asymmetry development of the upstream and downstream crown. Both the instability of upstream and downstream crowns increases with the increase of Re and We, and the upstream crown becomes more prone to break up. And a critical value of film thickness exists with the height of the upstream and downstream liquid crowns reaches the maximum value. And the velocity of liquid film restrains the development of the height of the upstream and downstream crowns, but it promotes the growth of the crown radius.


2015 ◽  
Vol 723 ◽  
pp. 896-900
Author(s):  
Yu Dong Mao ◽  
Ming Tian Xu

Ultra-fast laser heating technology has been widely used in the micro-/nanodevices. The Lattice Boltzmann method (LBM) is employed to simulate the heat conductions of laser heating appeared in a thin film. The results obtained by the LBM show that a wavelike behavior is appeared, but it can not be found in Fourier prediction. Comparing the results obtained by the Fourier law and LBM, we find that the LBM solution shows higher temperature than the Fourier prediction. Moreover, simultaneously heating both surfaces of a thin silicon film by ultra-fast lasers can induce two thermal waves traveling in the opposite directions, and when they meet together, the energy will enhance significantly.


AIP Advances ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 085312
Author(s):  
Jiayu Zhou ◽  
Hao Yuan ◽  
Xiaolong He ◽  
Dianguang Ma ◽  
Chunhang Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document