Analysis of Welded Joint Under Residual Stresses

Author(s):  
H. P. Jawale ◽  
Rahul Singh

Welded joint is most commonly used for building structures and machine components. Welding process involves heating followed by uneven cooling causing residual stress field. In conjunction with stresses due to external loads, in-service behaviour is affected due to residual stress in welded components. It induces defects, also alters crack initiation life, fatigue behaviour, breaking strength, corrosion resistance and increases the susceptibility of structure to failure by fracture. The residual stress is function of cooling rate and the size of weld. The role of residual stress associated with welding is therefore very important while designing mechanical parts. Conventional methods like heat treatment and shot-peening techniques becomes difficult to be applied for reduction of residual stress in general purpose applications. The work presented in this paper describes the measurement of residual stress using stress relieving method, based on hole-drilling technique. Subsequently, residual stresses are relived and measured using strain rosette near the weld zone. These strains value is converted in to stress value. Residual stress is quantified with respect to yield strength, making it possible to be considered for safe designing of weld components.

2011 ◽  
Vol 418-420 ◽  
pp. 1486-1493
Author(s):  
Afsaneh Razavi ◽  
Fatemeh Hafezi ◽  
Hossein Farrahi

Residual stresses resulted from localized non-uniform heating and subsequent cooling during welding processes enact an important role in the formation of cracks and welding distortions and have severe effect on performance of welded joints. The present research performs a three dimensional transient thermo Elasto-plastic analysis using finite element technique to simulate welding process. Welding simulation procedure is developed using the parametric design language of commercial code ANSYS for single pass T and butt welded joints. The procedure verified with predicted residual stress field found in literature to confirm the accuracy of the method. The material of the weld metal, HAZ and the base metal are assumed to be the same. With regards to high temperature gradient in weld zone, temperature dependant thermal and mechanical properties have been incorporated in the simulation. Also in this work the technique of element birth and death was employed to simulate moving heat source and the weld filler variation with time. Temperature and residual stress fields were discussed.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


2012 ◽  
Vol 184-185 ◽  
pp. 649-652
Author(s):  
Gui Fang Guo ◽  
Shi Qiong Zhou ◽  
Liang Wang ◽  
Li Hao ◽  
Ze Guo Liu

The effects of electron beam welding on the residual stresses of welded joints of pure aluminum plate 99.60 are studied by through-hole-drilling and blind-hole-drilling method. Meanwhile, based on the thermal elastic-plastic theory, and making use of ANSYS finite element procedure, a three - dimensional finite element model using mobile heat source of temperature and stresses field of electron beam welding in pure aluminum is established. The welding process is simulated by means of the ANSYS software. The results show that the main residual stress is the longitudinal residual stress, the value of the longitudinal residual stress is much larger than the transverse residual stress. But the residual stress in the thickness is rather small. And in the weld center, the maximum value of residual stresses is lower than its yield strength. The simulation results about the welded residual stresses are almost identical with the experimental results by measuring. So the research result is important to science research and engineering application.


2003 ◽  
Vol 38 (4) ◽  
pp. 349-365 ◽  
Author(s):  
R. C Wimpory ◽  
P. S May ◽  
N. P O'Dowd ◽  
G. A Webster ◽  
D J Smith ◽  
...  

Tensile welding residual stresses can, in combination with operating stresses, lead to premature failure of components by fatigue and/or fracture. It is therefore important that welding residual stresses are accounted for in design and assessment of engineering components and structures. In this work residual stress distributions, obtained from measurements on a number of ferritic steel T-plate weldments using the neutron diffraction technique and the deep-hole drilling method, are presented. It has been found that the residual stress distributions for three different plate sizes are of similar shape when distances are normalized by plate thickness. It has also been found that the conservatisms in residual stress profiles recommended in current fracture mechanics-based safety assessment procedures can be significant—of yield strength magnitude in certain cases. Based on the data presented here a new, less-conservative transverse residual stress upper bound distribution is proposed for the T-plate weldment geometry. The extent of the plastic zone developed during the welding process has also been estimated by use of Vickers hardness and neutron diffraction measurements. It has been found that the measured plastic zone sizes are considerably smaller than those predicted by existing methods. The implications of the use of the plastic zone size as an indicator of the residual stress distributions are discussed.


Author(s):  
Hector Delgado ◽  
Jeff Moore ◽  
Augusto Garcia Hernandez

This paper reports a comparison of two methods to perform residual stress measurements. The specimens tested by each method were two blades from a shrouded centrifugal compressor impeller. The first method is the conventional hole drilling strain gage method which was used to predict residual stresses across the blade surface. The residual stresses are released by drilling a hole in the blade. The second method is called the nonlinear harmonic (NLH) scanning method and is based on the principal that the magnetic domains of ferrous materials vary in a non-linear way relative to internal stress. The effects of residual stress may be either helpful or harmful, depending on the magnitude of the residual with respect to the operating stresses. If not adequately relieved by heat treatment, residual tensile stress that develops in the welding process of shrouded impellers, will add to the stress developed by rotation which moves the point to the right on the Goodman diagram and reduces allowable alternating stress. The results showed comparable residual stress measurements of the NLH method compared to the conventional hole drilling method.


Author(s):  
Lionel Depradeux ◽  
Frédérique Rossillon

In order to obtain the residual stress field resulting from the welding process, numerical simulations of multi-pass welding have demonstrated their efficiency and have become an interesting alternative to practical measurements. However, in the context of engineering studies, it remains a difficult task to compute residual stresses for a very high number of passes with reasonable computation times. In this paper, a time-saving method is proposed to simulate the welding process, ensuring an accurate reproduction of the residual stress field with drastically reduced computation times. The method consists in including in the simulation only the last deposited pass, or a reduced number of appropriately selected passes. For a given material and a given heat input, the choice of remaining passes depends on the geometrical parameters. The method is applied to various geometries of austenitic pipes girth welds, which have been widely studied in the literature and standards. The results, confronted to multipass simulations including all the passes, and to literature results, are very satisfactory. Quasi-identical residual stress fields are computed in both cases with computation times divided by a factor comprised between 7 up to 12. Further computations are in progress on other configurations than girth-weld pipes, and more complex 3D geometry like J weld of bottom head nozzles.


Author(s):  
Xavier Ficquet ◽  
Ashley Bowman ◽  
Devkumar Goudar ◽  
Manuel Körner ◽  
Ed J. Kingston

Explicit understanding of the residual stress field of primary submarine pressure hull induced during fabrication will improve the fidelity of numerical analysis and experimentation. Hence, supporting operational envelope and design life extension initiatives. The fatigue lifetime of a submarine hull depends on the loads generated by hull contraction under the effect of hydrostatic pressure and the residual stresses existing in the absence of external loading. The use of numerical simulation allows a straightforward calculation of the stresses induced by the hydrostatic pressure. The effect of residual stress could be determined using the current failure assessment procedures, like BS7910 and R6. However it is more intricate to determine the residual stresses resulting from the sheet bending process combined with the sheet assembly using a multipass welding process. There are several measurement techniques available to measure residual stresses. They are often classified by their level of destructiveness and their penetration.In order to compare the different measurement techniques an elastic-plastic bent beam sample has been chosen as it is very comparable to the residual stress field induced during the sheet bending process used in the submarine structure. Four bent beams have been measured using five different techniques: Incremental centre hole drilling, ring core, neutron diffraction, slitting and deep hole drilling technique. The results from measurement techniques show an excellent agreement when compared with the FEA. In order to measure a full scale Rubis class submarine hull a limited number of techniques can be used, as the technique needs to be portable. The Deep Hole Drilling (DHD) technique was chosen because the neutron diffraction would require extracting a small test sample of about 400mm × 400mm, hence redistributing the residual stresses that were intended to be measured. Six measurements were carried out at different angular positions to detect variability in manufacture on a Rubis class submarine and a probabilistic calculation was done using all six DHD measurements. The Rubis class measurement results are also compared with two other submarine types, found in the literature. Understanding the three-dimensional behaviour of residual stress in this type of structure provides a valuable resource to the numerical modelling community. The results can also support fatigue and fracture experimental work and may help increasing the operating life of 28 year old French nuclear submarine.


2013 ◽  
Vol 768-769 ◽  
pp. 449-455 ◽  
Author(s):  
Zoran Bergant ◽  
Janez Grum

The in-plane residual stresses in laser cladded specimens, made of 12-nickel precipitation hardening maraging hot-working tool steel 1.2799 (SIST EN 10027-2) are analyzed using the hole drilling method. The CO2 laser was used to deposit the alloy NiCoMo-1 with significantly higher content of nickel and cobalt with austenitic microstructure at room temperature. The Nd:YAG laser was used to deposit the maraging alloy designated NiCoMo-2, with similar chemical composition as the base material. The comparison of residual stress field showed the sign and the magnitude of residual stresses depends on the chemical composition of the clad being deposited. The high tensile residual stresses were found in NiCoMo-1 layers and favorable compressive residual stresses were found in NiCoMo-2 layers. The metallurgical aspects of residual stress generation are discussed.


2009 ◽  
Vol 83-86 ◽  
pp. 738-745
Author(s):  
G.H. Farrahi ◽  
G.H. Majzoobi ◽  
A. Fadaee

In the present work, specimens were cut out from St-37 plates with 19 mm thickness. The thickness of plates was reduced to 12.5 mm by milling and grinding operations. Then a standard V-shaped fillet was made on one edge of the plates. Two plates were butt-welded by standard metal arc gas (MAG) welding process. Residual stresses induced by welding were measured on 20 specimens by centre hole drilling. Load controlled axial fatigue tests were carried out to determine the fatigue life of specimens. Crack growth rates were obtained from experiment. Fractography of specimens was performed. Genetic Algorithm (GA) was employed for prediction of residual stress value in weldments using the crack growth rates obtained from experiments. The results show that, by using the measured crack growth rates and GA model, residual stresses can be estimated with a good approximation.


Author(s):  
Harouche Mohamed Karim ◽  
Hattali Lamine ◽  
Mesrati Nadir

Thermal spray is one of the most used techniques to produce coatings on structural materials. Such coatings are used as protection against high temperatures, corrosion, erosion and wear. The combined action of high pressures, temperatures and spraying conditions give rise to non-uniform residual stresses. The latter plays an important role in coating design and process parameters optimization. The present work highlights the influence of coatings thickness on the evolution of residual stresses in layered materials. Therefore, thick stainless steel coatings (ASTM 301) of different thicknesses are manufactured by wire arc spraying on aluminium alloy substrates (ASTM 2017A). For a better bond strength, a Ni–Al bond coat is first deposited. Furthermore, a numerically supported hole drilling strain gage method for residual stress field evaluation is proposed. Required calibration coefficients, for the strain–stress transformation formalism based on the integral method, are computed through finite element calculations using Abaqus software. The results indicate that the maximum residual stresses, for all thicknesses, are tensile and range from 140 to 275 MPa. The bond coat does not seem to affect the stress field. Also, it was found that the mean equivalent Von-Mises stress decreases with increasing coating thickness; hence reducing the interfacial adhesion energy of the sprayed materials.


Sign in / Sign up

Export Citation Format

Share Document