Design and Modeling of an Integrated CHP System With Solar Hydrogen/Methane Fueled PEM Fuel Cell for Residential Applications

2014 ◽  
Author(s):  
Hajar Amirian ◽  
Farid Sayedin ◽  
Azadeh Maroufmashat

This paper describes the designing and evaluation of an alternative energy system which consists of PEMFC, PV, PEM electrolyser, methane reformer and hydrogen tank. In order to find out the minimum capacity of the components, a system sizing model is developed in MATLAB based on meteorological and electrical demand data. Three scenarios are considered based on different combinations of solar energy and fossil fuel energy as energy resources. The heating energy produced by the fuel cell is recovered for supplying domestic hot water while the system would supply electrical energy. Results show that system sizing strongly depends on scenarios and unit cost of electricity decreases through the reduction of solar energy contribution in scenarios. CHP analysis indicates that the overall energy efficiency and fuel cell efficiency are increased approximately 3.4% and 40% respectively. Furthermore, the cost benefit ratio of using the fuel cell heat is equivalent to 25% of the total annual cost of the electricity.

2014 ◽  
Vol 699 ◽  
pp. 689-694 ◽  
Author(s):  
Mohd Zulkefli Selamat ◽  
Mohd Shakir Ahmad ◽  
Mohd Ahadlin Mohd Daud ◽  
Musthafa Mohd Tahir ◽  
Safaruddin Gazali Herawan

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is an alternative energy system that has been verified with great potential for high power density, durability and cost effectiveness. Since the bipolar plate is the key component in PEMFC, the component must operate with multifunction and have a balance of properties, essentially well in both electrical and mechanical properties. At present, many different materials have been tested to be applied for bipolar plate in order to fulfill the balance in each property. In this work, the different material is tested and observed. Polypropylene (PP) is used as a binder material, Graphite (Gr) is used as a main filler and Carbon Black (CB), Iron (Fe) and Nickel (Ni) as the second filler. This composite is produced through compression molding and the effect of different filler material loading on the properties such as electrical conductivity, flexural strength, bulk density and shore hardness are observed. The result showed the increasing of electrical conductivity as the increased the CB and Fe loading. But for Ni, the result showed the decreasing of electrical conductivity as the loading of Ni has been increased. The targeted value also achieved for some certain degree of filler loading.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 40-44 ◽  
Author(s):  
R.B. Schwarz

Magnesium can reversibly store about 7.7 wt% hydrogen, equivalent to more than twice the density of liquid hydrogen. This high storage capacity, coupled with a low price, suggests that magnesium and magnesium alloys could be advantageous for use in battery electrodes and gaseous-hydrogen storage systems. The use of a hydrogen-storage medium based on magnesium, combined with a fuel cell to convert the hydrogen into electrical energy, is an attractive proposition for a clean transportation system. However, the advent of such a system will require further research into magnesium-based alloys that form less stable hydrides and proton-conducting membranes that can raise the operating temperature of the current fuel cells.Following the U.S. oil crisis of 1974, research into alternative energy-storage and distribution systems was vigorously pursued. The controlled oxidation of hydrogen to form water was proposed as a clean energy system, creating a need for light and safe hydrogen-storage media. Extensive research was done on inter-metallic alloys, which can store hydrogen at densities of about 1500 cm3-H2 gas/ cm3-hydride, higher than the storage density achieved in liquid hydrogen (784 cm3/cm3 at –273°C) or in pressure tanks (˜200 cm3/cm3 at 200 atm). The interest in metal hydrides accelerated following the development of portable electronic devices (video cameras, cellular phones, laptop computers, tools, etc.), which created a consumer market for compact, rechargeable batteries. Initially, nickel-cadmium batteries fulfilled this need, but their relatively low energy density and the toxicity of cadmium helped to drive the development of higher-energy-density, less toxic, rechargeable batteries.


Author(s):  
Yu. Selikhov ◽  
K. Gorbunov ◽  
V. Stasov

Solar energy is widely used in solar systems, where economy and ecology are combined. Namely, this represents an important moment in the era of depletion of energy resources. The use of solar energy is a promising economical item for all countries of the world, meeting their interests also in terms of energy independence, thanks to which it is confidently gaining a stable position in the global energy sector. The cost of heat obtained through the use of solar installations largely depends on the radiation and climatic conditions of the area where the solar installation is used. The climatic conditions of our country, especially the south, make it possible to use the energy of the Sun to cover a significant part of the need for heat. A decrease in the reserves of fossil fuel and its rise in price have led to the development of optimal technical solutions, efficiency and economic feasibility of using solar installations. And today this is no longer an idle curiosity, but a conscious desire of homeowners to save not only their financial budget, but also health, which is possible only with the use of alternative energy sources, such as: double-circuit solar installations, geothermal heat pumps (HP), wind power generators. The problem is especially acute in the heat supply of housing and communal services (HCS), where the cost of fuel for heat production is several times higher than the cost of electricity. The main disadvantages of centralized heat supply sources are low energy, economic and environmental efficiency. And high transport tariffs for the delivery of energy carriers and frequent accidents on heating mains exacerbate the negative factors inherent in traditional district heating. One of the most effective energy-saving methods that make it possible to save fossil fuel, reduce environmental pollution, and meet the needs of consumers in process heat is the use of heat pump technologies for heat production.


Author(s):  
Justin Kramer ◽  
Brenton Greska ◽  
Anjaneyulu Krothapalli

This paper deals with the construction and implementation of the Off-Grid Zero Emissions Building (OGZEB), a project undertaken by the Energy Sustainability Center (ESC), formally the Sustainable Energy Science and Engineering Center (SESEC), at the Florida State University (FSU). The project involves the design, construction and operation of a completely solar-powered building that achieves LEED-NC (Leadership in Energy and Environment Design-New Construction) platinum certification. The 1064 square foot building is partitioned such that 800 square feet is a two bedroom, graduate student style flat with the remaining 264 square feet serving as office space. This arrangement allows the building to serve as an energy efficient model for campus designers in student living and office space. The building also serves as a prototype for developing and implementing cutting edge, alternative energy technologies in both residential and commercial settings. For example, hydrogen is used extensively in meeting the energy needs of the OGZEB. In lieu of high efficiency batteries, the excess electricity produced by the buildings photovoltaic (PV) panels is used to generate hydrogen via water electrolysis for long term energy storage. The hydrogen is stored on-site until needed for either generating electricity in a Proton Exchange Membrane (PEM) fuel cell stack or combusted in natural gas appliances that have been modified for hydrogen use. The use of hydrogen in modified natural gas appliances, such as an on-demand hot water heater and cook top, is unique to the OGZEB. This paper discusses the problems and solutions that arose during construction and includes detailed schematics of the OGZEBs energy system.


2014 ◽  
Vol 925 ◽  
pp. 505-509 ◽  
Author(s):  
Intan Rahayu Ibrahim ◽  
Ahmad Maliki Omar ◽  
Zakaria Hussain

The dual-power PV-grid system was introduced to manipulate the lower tariff rate at off-peak period and to reduce the capital installation cost of PV energy system. The power converter in the PV energy system is used to process solar energy captured by PV modules into usable electrical energy. In the dual-power PV-grid system, the power converter component is consists of a boost regulator to boost and regulate PV outputs to fixed voltage of 240V, 50Hz, a maximum power point tracker (MPPT) to derive maximum power from PV panels and a three operation modes of the battery converter to regulate charging current/discharging current under various PV output and load variation. In this project, a reduced switch and increased level of cascaded H-bridge multilevel inverter was introduced to convert the direct current (DC) output of the solar energy to alternating current (AC) signal to supply an AC load or to be integrated to the grid system. By adapting selective harmonic elimination (SHE) switching strategy, the inverter produces 21 levels of stepped sinusoidal output signal with resultant total harmonics distortion (THD) of 3.90%.


2016 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki ◽  
A. S. Kontos

The scope of this work is the analysis of the electrical and thermal performance of an asymmetric hybrid solar collector PVT and the prospect of the installation of a system consisting of these collectors in the Mediterranean region. For the purpose of this work, the Solarus V11 PVT collector (readily available in our laboratory) was chosen and numerically modeled. The main asset of this collector is its asymmetric reflector that consists of a circular and a parabolic part leading to a maximum thermal energy production even in winter as the solar radiation is concentrated in the edge of the reflector rather than in the center of it. Using a software developed in Matlab, the calculated data are presented for both thermal and electrical energy and they are compared with the hot water and electrical energy requirements (per month) around the Mediterranean territory. Furthermore, a parametric study is conducted in order to investigate the effect of the mass flow rate and the PVT array configuration on the thermal and electrical production, as well as the efficiency of the solar cells of the system. Moreover, in order to increase the PV cell efficiency, nanofluids, i.e. mixtures of nanometer size particles well-dispersed in a base fluid, are proposed as heat transfer fluids and the analysis for the performance evaluation is conducted for different nanoparticle loadings.


2014 ◽  
Vol 899 ◽  
pp. 199-204
Author(s):  
Lukáš Skalík ◽  
Otília Lulkovičová

The energy demand of buildings represents in the balance of heat use and heat consumption of energy complex in the Slovak national economy second largest savings potential. Their complex energy demands is the sum of total investment input to ensure thermal protection and annual operational demands of particular energy systems during their lifetime in building. The application of energy systems based on thermal solar systems reduces energy consumption and operating costs of building for support heating and domestic hot water as well as savings of non-renewable fossil fuels. Correctly designed solar energy system depends on many characteristics, i. e. appropriate solar collector area and tank volume, collector tilt and orientation as well as quality of used components. The evaluation of thermal solar system components by calculation software shows how can be the original thermal solar system improved by means of performance. The system performance can be improved of more than 31 % than in given system by changing four thermal solar system parameters such as heat loss coefficient and aperture area of used solar collector, storage tank volume and its height and diameter ratio.


Author(s):  
Cory Budischak ◽  
Keith W. Goossen

Solar energy will be an important source of energy for a sustainable energy system whether or not it is directly collected (solar thermal, photovoltaics) or indirectly collected (wind, wave, etc). This project focused on increasing the efficiency of the direct conversion of solar energy into electricity, which is also known as photovoltaics (PV). It has long been known that photovoltaic cells perform less efficiently at higher temperatures. In fact, solar modules under concentration are frequently cooled either actively or passively. The current study, however, focused on cooling modules under no concentration. The goal of the current project was to answer the question: Can the energy gained by cooling a photovoltaic module with groundwater be greater than the energy used by the cooling system and is there an economic benefit? A digital simulation of a simple photovoltaic module under groundwater cooling was performed in order to answer the research question. The simulation was performed for Phoenix, AZ and assuming certain control parameters it was found that the overall system produced over 9% more electricity than a system without groundwater cooling. While the groundwater cooled system increased overall electrical production, the economics of the system will also be presented. Recently, an Arizona utility APS introduced time of use pricing for electricity. Because groundwater cooling provides the most benefit during very hot days with high electrical demand, cooling is more economically attractive. A simple economic analysis will be presented including estimated costs of the cooling system and added value of the excess electrical energy produced under different APS rate plans.


Author(s):  
Adegoke Oladipo Melodi ◽  
Sola Richard Famakin

<p>The abundance of solar energy in Akure, South-West Nigeria and its feasibility as an alternative energy source has been proven. However, cheap, Government subsidized but unreliable grid electricity and high cost of solar equipment are considered the major hindrances to deployment of solar energy for improved power supply and environmental sustainability. An earlier work pointed out realistic pricing of electricity, reduced cost of solar equipment and reduction in solar cell degradation factor as major factors capable of speeding up parity hence, motivating solar energy consumption. It showed that parity is attainable within 14 years. Documented significant improvements in these factors in recent times are the motivations for this review. This review cost-comparatively re-assesses both sources of energy under the prevailing National electricity policy and market realities using simple mathematical and graphical modeling techniques. This is with a view to determining a new timing for parity of solar energy with grid supply. Results showed that solar PV-grid energy cost parity is now attainable within 6 years in the study region. It was also observed that sustained improvement in grid energy unit cost and reduction in cost of solar equipment and accessories may accelerate solar-grid energy parity to less than three years.</p>


Sign in / Sign up

Export Citation Format

Share Document