RENEWABLE ENERGY INTEGRATION FOR HOT WATER SUPPLY AND HEATING OF BUILDINGS

Author(s):  
Yu. Selikhov ◽  
K. Gorbunov ◽  
V. Stasov

Solar energy is widely used in solar systems, where economy and ecology are combined. Namely, this represents an important moment in the era of depletion of energy resources. The use of solar energy is a promising economical item for all countries of the world, meeting their interests also in terms of energy independence, thanks to which it is confidently gaining a stable position in the global energy sector. The cost of heat obtained through the use of solar installations largely depends on the radiation and climatic conditions of the area where the solar installation is used. The climatic conditions of our country, especially the south, make it possible to use the energy of the Sun to cover a significant part of the need for heat. A decrease in the reserves of fossil fuel and its rise in price have led to the development of optimal technical solutions, efficiency and economic feasibility of using solar installations. And today this is no longer an idle curiosity, but a conscious desire of homeowners to save not only their financial budget, but also health, which is possible only with the use of alternative energy sources, such as: double-circuit solar installations, geothermal heat pumps (HP), wind power generators. The problem is especially acute in the heat supply of housing and communal services (HCS), where the cost of fuel for heat production is several times higher than the cost of electricity. The main disadvantages of centralized heat supply sources are low energy, economic and environmental efficiency. And high transport tariffs for the delivery of energy carriers and frequent accidents on heating mains exacerbate the negative factors inherent in traditional district heating. One of the most effective energy-saving methods that make it possible to save fossil fuel, reduce environmental pollution, and meet the needs of consumers in process heat is the use of heat pump technologies for heat production.

2021 ◽  
pp. 51-55
Author(s):  
Pavel A. Khavanov

Energy saving in small-scale heat power engineering is directed to increasing the efficiency of using fossil energy carriers, electric power, and their wider replacement with alternative sources in housing and communal complex. The practical use of active solar energy systems, both photovoltaic and with direct water heating, has found widespread use. At the same time, the specificities of these systems deployment are caused by climatic and technical conditions of their application. For countries found in climatic zones with temperate and cold climate, water heating installations design is most rational when used seasonally. Low coolant potential, heat supply frequency in active solar energy systems, linked to seasonality of their operation, daytime and weather require several technical solutions. For example, solutions with the use of other equipment in form of thermal energy accumulators, heat pumps and other equipment, which in any case must be combined with a traditional source of thermal energy using fossil fuels or electric power, performing the functions of both other and emergency source of heat energy. Capacity reserving of alternative energy sources is most efficient and least energy-consuming when conducting with heat sources using gaseous or degasified fuel. The use of electric power for heat supply purpose, with few capital investments, requires from a developer significant installed capacities of heat source with a low efficiency for primary fuel. In the article one considers thermal schemes of autonomous heat supply installations for objects using modern condensing boilers of low power and along them various heat cumulating devices, supplying full year operation of equipment at heat supply facilities to get the highest efficiency of energy use.


2021 ◽  
Vol 263 ◽  
pp. 02025
Author(s):  
Azarij Lapidus ◽  
Vadim Fedoseev ◽  
Alexander Sokolov ◽  
Julia Ostryakova ◽  
Vladimir Voronov

There are most of the energy`s costs are accounted for by heating and hot water supply in communal housing conditions. Every day there is a growing need for the development and development of alternative options for energy generation technology. In the field of alternative energy, the most popular solution is a heat supply system based on air heat pumps (HP). Construction and installation work is simplified for integrated heat pump systems, but the question of the organization of design for these devices remains not fully resolved. The purpose of the work is to study the features and patterns of design and construction works with heat pump systems built into the premises in the field of low-rise construction and to develop measures to reduce the time and cost of such works. Heat engineering calculations for integrated heat pump systems that take into account climatic features, architectural and construction elements and parameters of engineering networks of the construction object, increase the complexity, cost and duration of design work. The research methods used are the analysis of the entire design process and in particular the section “heating and ventilation”, further modeling through network planning of the design process and comparison of the obtained data. The results of the study are calendar schedules of the design process of integrated heat pump systems on the example of a cottage structure with an area of 150 m2. For further analysis, the parameters of the time reserves of the working processes of the obtained network graphs are calculated. The section of heating, ventilation and heat supply (S) for integrated heat pump systems of heat supply is compared with the classical one, where the heat generator is an electric boiler. As a result of the study, a scheme for organizing design work is proposed, which allows you to plan the design of the section S without affecting the overall terms of execution of project documentation and the growth of its cost.


Author(s):  
R. Klimov ◽  
A. Morozovskaya

The consumption of energy resources in the world states is constantly growing from year to year. The production of fossil fuels is also increasing, but for various reasons it cannot fully cover the required amount from consumers. One of the most important consumption sectors is heat loads from heating, ventilation and hot water supply of industrial and residential buildings. To cover the thermal loads of heating and hot water supply, the necessary heat carrier is water heated to a certain temperature. The most promising from the point of view of heating water for hot water supply are solar collectors. Hot water for heating needs to be reheated practically throughout the entire heating period. The introduction of heat pumps is promising. When using solar collectors, the heating agent can be reheated in heat pumps. The aim of the study is to develop such a combined heat supply system that uses more renewable energy and as a peak source a fossil fuel boiler (electric energy), as well as a method for calculating this system to determine the optimal composition of equipment and rational modes of its operation. The methodology for calculating heat supply systems combining solar collectors, heat pumps and fossil fuel boilers is presented. The problem of load distribution between the main elements of the combined heat supply system should take into account the probabilistic component. This is due to the fact that with a changing real mode of operation, different thermal load of the equipment can be optimal. This is primarily influenced by the variable heat inputs from solar collectors during the day. According to the above method, it is possible to determine the optimal parameters of the heat supply system for different operating modes, at which the minimum consumption of fossil fuel will be ensured.


2012 ◽  
Vol 30 ◽  
pp. 101-105 ◽  
Author(s):  
Andreas Genkinger ◽  
Ralf Dott ◽  
Thomas Afjei

2021 ◽  
Vol 255 ◽  
pp. 01048
Author(s):  
Nataliia Savina ◽  
Yevheniia Sribna ◽  
Volodymyr Yemelyanov ◽  
Svitlana Dombrovska ◽  
Dmytro Mishchenko

The purpose of the article is to assess the pace of capital contribution and investment in solar energy in order to increase the energy security of national economies. The study analyzes the development of the global solar industry for years 2009-2019 in the context of investment support. The main stages of development of world solar energy are marked and the priority of countries and regions is determined. Factors of attractiveness of solar energy for private investment are noted, namely the investment climate is formed at the expense of legislative maintenance of this sphere, and in the economic plan at the expense of introduction of the «green» tariff. Two main investment processes in the development of solar energy are noted. First, these are large private companies that implement large-scale projects from solar stations. Secondly, this small private investment to provide electric for households that identified a small city urbanization and climatic conditions. It was found that the solar energy market depends more on capital intensity than on resource intensity. The result of economic calculation is indicated, which allowed to determine the term of reduction of the cost price of 1 kW of photovoltaic power station electricity to the level of NPP production cost for ten years.


Author(s):  
Z. Sirkо ◽  
◽  
V. Korenda ◽  
I. Vyshnyakov ◽  
O. Protasov ◽  
...  

Heat pump - a device for transferring thermal energy from a source of low potential thermal energy to a consumer with a higher temperature. The thermodynamic cycle of a heat pump is similar to a refrigerating machine. Depending on the principle of operation, heat pumps are divided into compression and absorption. The most commonly used compression heat pumps. In recent years, numerous publications on the use of heat pump technology in heating and hot water supply facilities of various spheres - from individual homes to residential neighborhoods have appeared in various media. The authors of the publication have many years of experience in joint scientific and technical cooperation with leading technical universities and industrial organizations in the field of development and practical use of heat pump technology. The authors analyze the possibilities of introducing heat pumps at enterprises and organizations of the State Reserve System of Ukraine. It has been shown that the amount of expenses in comparison with central heating or operation of gas and electric boilers of similar power is several times smaller. It is noted that the implementation of heat pumps is a promising direction in the use of alternative energy sources to meet the heating, ventilation and hot water supply needs of buildings. The payback period from the introduction of heat pumps at enterprises is 4-9 years, depending on the location of the object and the type of source of low-temperature heat. The article meets the requirements of the State Tax Code of Ukraine and can be recommended for publication.


Author(s):  
І. Puhoviy ◽  
М. Makhrov

Problems. Windows in the summer let through a large amount of solar energy into the room, which causes an additional cost of cooling the air by conditioning. It is known that the limit of comfort is the temperature of 26 oC. To reduce the temperature, use air conditioners, which are required 0,3...0,5 kW of electrical power for 10 m2 of housing. The study deals with the capture of solar energy by water and its use for domestic water purposes (DHW). The goal of the research. Experimental verification of patented developments and calculations of hot water quantity obtained per day, energy savings and economic indicators. Methods of implementation. Experiments were conducted on the south window of the room, with water pumping by a pump and periodic measurement of air and water temperatures at the outlet of the system by mercury thermometer. The calculations were performed using the methods developed by the authors. The studies were conducted within three days of November. The temperature inside ranged a room from 19 to 23 °C. The system was operated in circulating mode on a water battery tank located below the absorber. Isolation of the absorber from the side of the room was made of a transparent food film. Research results. Water temperature reached 45 °C per 1,5-2 hours. Water consumption is enhanced by the thermosiphon effect when water moves from the bottom up. On a clear day of spring and autumn, you can heat for 50-70 % more water than the average for the average day of months of the warm season. For preparing DHW with 1 m2 of absorber, it is possible to get 45-50 kW∙h of heat for each month from March to September, taking into account cloudiness. The savings from the use of hot water and from reducing the consumption of electricity in the air conditioner are calculated. Conclusions. The payback period of the system, taking into account the cost of the heat for DHW and electricity savings for an electric air conditioner, is approximately 4-5 years. The cost of the system is close to the cost of a home air conditioner, for a premise with a single window oriented south. To the energy-saving factor, an additional advantage is the environmental friendliness of the system compared to the air conditioner.


1977 ◽  
Vol 6 (2) ◽  
pp. 56-66
Author(s):  
Donald L. Van Dyne

The cost and availability of conventional energy sources currently used as inputs for agricultural production continue to be a very important concern in planning and decision making. Interest in solar energy for use in space and water heating, grain drying, and other areas, has been stimulated because it is technically feasible, abundant, renewable, and nonpolluting. Although it is reasonably reliable and can provide a large portion of the total heat need for many situations, it does require an auxiliary source of energy.


Author(s):  
Anagha Pathak ◽  
Kiran Deshpande ◽  
Sandesh Jadkar

There is a huge potential to deploy solar thermal energy in process heat applications in industrial sectors. Around 50 % of industrial heat demand is less than 250 °C which can be addressed through solar energy. The heat energy requirement of industries like automobile, auto ancillary, metal processing, food and beverages, textile, chemical, pharmaceuticals, paper and pulp, hospitality, and educational institutes etc. can be partially met with solar hybridization based solutions. The automobile industry is one of the large consumers of fossil fuel energy in the world. The automobile industry is major economic growth driver of India and has its 60 % fuel dependence on electricity and remaining on oil based products. With abundant area available on roof top, and need for medium temperature operation makes this sector most suitable for substitution of fossil fuel with renewable solar energy. Auto sector has requirement of heat in the temperature range of 80-140 oC or steam up to 2 bar pressure for various processes like component washing, degreasing, drying, boiler feed water preheating, LPG vaporization and cooling. This paper discusses use of solar energy through seamless integration with existing heat source for a few processes involved in automobile industries. Integration of the concentrated solar thermal technology (CST) with the existing heating system is discussed with a case study for commonly used processes in auto industry such as component washing, degreasing and phosphating. The present study is undertaken in a leading automobile plant in India. Component cleaning, degreasing and phosphating are important processes which are carried out in multiple water tanks of varying temperatures. Temperatures of tanks are maintained by electrical heaters which consumes substantial amount of electricity. Non-imaging solar collectors, also known as compound parabolic concentrators (CPC) are used for generation of hot water at required process temperature. The CPC are non-tracking collectors which concentrate diffuse and beam radiation to generate hot water at required temperature. The solar heat generation plant consists of CPC collectors, circulation pump and water storage tank with controls. The heat gained by solar collectors is transferred through the storage tank to the process. An electric heater is switched on automatically when the desired temperature cannot be reached during lower radiation level or during non-sunny hours/days. This solar heating system is designed with CPC collectors that generate process heating water as high as 90OC. It also seamlessly integrates with the existing system without compromising on its reliability, while reducing electricity consumption drastically. The system is commissioned in April, 2013 and since then it has saved ~ 1,75,000 units of electricity/year and in turn 164 MT of emission of CO2 annually.


2019 ◽  
Vol 3 (2) ◽  

In the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasise has been put on utilisation of the ambient energy from ground source heat pump systems (GSHPs) and other renewable energy sources. Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. The study was carried out at the Energy Research Institute (ERI), between September 2016 and November 2017. This paper highlights the potential energy saving that could be achieved through use of ground energy source. The main concept of this technology is that it uses the lower temperature of the ground (approximately <32°C), which remains relatively stable throughout the year, to provide space heating, cooling and domestic hot water inside the building area. The purpose of this study, however, is to examine the means of reducing of energy consumption in buildings, identifying GSHPs as an environmental friendly technology able to provide efficient utilisation of energy in the buildings sector, promoting the use of GSHPs applications as an optimum means of heating and cooling, and presenting typical applications and recent advances of the DX GSHPs. It is concluded that the direct expansion of GSHP are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors. This study highlights the energy problem and the possible saving that can be achieved through the use of the GSHP systems. This article discusses the principle of the ground source energy, varieties of GSHPs, and various developments.


Sign in / Sign up

Export Citation Format

Share Document