Assessment of the Academic CFD Code Galatea-I With the DARPA SUBOFF Test Case

Author(s):  
Sotirios S. Sarakinos ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

In this study an academic CFD code, named Galatea-I, is presented, capable for simulating inviscid, viscous laminar and viscous turbulent incompressible fluid flows. It employs the RANS (Reynolds-Averaged Navier-Stokes) approach along with the SST (Shear Stress Transport) turbulence model to predict turbulent flow phenomena, such as recirculations and separations of flow, on three-dimensional unstructured hybrid grids, composed of prismatic, tetrahedral and pyramidal elements. Discretization of the governing equations is obtained with a node-centered finite-volume scheme. Parallel processing and agglomeration multigrid scheme are implemented for the acceleration of the numerical process. As the title of this paper reveals, the solver is validated against the test cases of the DARPA SUBOFF program; in particular, flows over the SUBOFF bare hull submarine geometry at two incident angles and the SUBOFF hull with fairwater configuration are examined. The obtained results, compared to available in open literature experimental data as well as results computed by reference solvers, indicate the proposed methodology’s potential to accurately simulate complex fluid flows.

Author(s):  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

Nowadays, the research in the aerospace scientific field relies strongly on CFD (Computational Fluid Dynamics) algorithms, avoiding (initially at least) a large fraction of the extremely time and money consuming experiments in wind tunnels. In this paper such a recently developed academic CFD code, named Galatea, is presented in brief and validated against a benchmark test case. The prediction of compressible fluid flows is succeeded by the relaxation of the Reynolds Averaged Navier-Stokes (RANS) equations, along with appropriate turbulence models (k-ε, k-ω and SST), employed on three-dimensional unstructured hybrid grids, composed of prismatic, pyramidical and tetrahedral elements. For the discretization of the computational field a node-centered finite-volume method is implemented, while for improved computational performance Galatea incorporates an agglomeration multigrid methodology and a suitable parallelization strategy. The proposed algorithm is evaluated against the Wing-Body (WB) and the Wing-Body-Nacelles-Pylons (WBNP) DLR-F6 aircraft configurations, demonstrating its capability for a good performance in terms of accuracy and geometric flexibility.


Author(s):  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

CFD (Computational Fluid Dynamics) algorithms are nowadays a necessary tool in the aerospace science, as their application allows for the prediction of the aerodynamic characteristics of complete aircraft configurations in a relatively short period of time. A brief presentation and evaluation of such a recently developed academic code, named Galatea, is the main goal of this study. Galatea employs the Reynolds Averaged Navier-Stokes (RANS) equations, discretized with a node-centered finite-volume scheme on three-dimensional unstructured hybrid grids for the simulation of inviscid and viscous compressible fluid flows. For the turbulence prediction appropriate turbulence models (k-ε, k-ω and SST) have been incorporated, while for the acceleration of the solution an agglomeration multigrid scheme along with a suitable parallelization strategy are employed. For the assessment of this algorithm runs over the wing-body and the wing-body-horizontal tail NASA Common Research Model (CRM) configurations were performed, allowing for a comparison in terms of accuracy of the obtained results with the experimental wind tunnel data, as well as with the computational results of corresponding reference solvers.


Author(s):  
Sotirios S. Sarakinos ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

In this study the development and assessment of an academic CFD (Computational Fluid Dynamics) code, named Galatea-I, is reported. The proposed solver employs the RANS (Reynolds-Averaged Navier-Stokes) approach, modified by the artificial compressibility method, along with the SST (Shear Stress Transport) turbulence model to predict steady or unsteady turbulent incompressible flow phenomena on three-dimensional unstructured hybrid grids, composed of prismatic, tetrahedral and pyramidal elements. Parallel processing and an agglomeration multigrid method have been included for the acceleration of the solver’s methodologies. Galatea-I is evaluated against a test case of the HiLiftPW-2 (Second High Lift Prediction Workshop). In particular, the low Mach number flow at 7° incidence angle over the DLR-F11 aircraft configuration of Case 1 of the aforementioned workshop was examined; it considers a three-element wing with a leading edge slat and a trailing edge flap attached on a body pod, without including though any of the support brackets used in the wind tunnel experiments. The obtained results are close to the available experimental data, as well as the numerical results of other reference solvers, indicating the proposed methodology’s potential to predict accurately such low Mach number flows over complex geometries.


Author(s):  
P. Peters ◽  
J. R. Menter ◽  
H. Pfost ◽  
A. Giboni ◽  
K. Wolter

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with shrouded rotor blades and a straight through labyrinth seal. The paper focuses on the time dependent influence of the leakage flow on the downstream stator flow field. The experimental program consists of time accurate measurements of the three-dimensional properties of the flow through ten different measurement planes in the stator passage. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes extend from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 4,800 measurement points and 20 time steps per blade passing period. The time-accurate experimental data of the ten measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the flow phenomena. Additionally numerical data behind the rotor is used to connect the entry of the leakage flow with the flow phenomena in the downstream stator passage and behind it. The leakage flow causes strong fluctuations of the flow in the downstream stator. Above all, the high number of measurement points reveals both the secondary flow phenomena and the vortex structures within the blade passage. The time-dependence of both the position and the intensity of the vortices influenced by the leakage flow is shown. The paper shows that even at realistic clearance heights the leakage flow influences considerable parts of the downstream stator and gives rise to negative incidence and flow separation. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbines.


2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


Author(s):  
A. Giboni ◽  
K. Wolter ◽  
J. R. Menter ◽  
H. Pfost

This paper presents the results of experimental and numerical investigations into the flow in a 1.5-stage low-speed axial turbine with a straight labyrinth seal on the rotor shroud. The paper focuses on the time dependent interaction between the leakage flow and the main flow. The experimental program consists of time accurate measurements of the three-dimensional properties of the main flow. The region of the entering leakage flow downstream of the rotor trailing edge was of special interest. The measurements were carried out using pneumatic five-hole probes and three dimensional hot-wire probes at the design operating point of the turbine. The measurement planes behind the three blade rows extend over one pitch from the shroud to the casing. The complex three-dimensional flow field is mapped in great detail by 1,008 points per measurement plane. The time-accurate experimental data of the three measurement planes was compared with the results of unsteady, numerical simulations of the turbine flow. The 3D-Navier-Stokes Solver CFX-TASCflow was used. The experimental and numerical results correspond well and allow detailed analysis of the mixing process. As demonstrated in this paper, the leakage flow causes strong fluctuations of the secondary flow behind the rotor and the second stator. Above all, the high number of numerical grid points reveals both the secondary flow phenomena and the vortex structures of the mixing zone. The time-dependence of both position and intensity of the vortices is shown. The development of the important leakage vortex is illustrated and explained. The paper shows that even at realistic clearance heights the leakage flow gives rise to negative incidence of considerable parts of the downstream stator which causes the flow to separate. Thus, labyrinth seal leakage flow should be taken properly into account in the design or optimization process of turbomachinery.


2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Tobias Brandvik ◽  
Graham Pullan

A new three-dimensional Navier–Stokes solver for flows in turbomachines has been developed. The new solver is based on the latest version of the Denton codes but has been implemented to run on graphics processing units (GPUs) instead of the traditional central processing unit. The change in processor enables an order-of-magnitude reduction in run-time due to the higher performance of the GPU. The scaling results for a 16 node GPU cluster are also presented, showing almost linear scaling for typical turbomachinery cases. For validation purposes, a test case consisting of a three-stage turbine with complete hub and casing leakage paths is described. Good agreement is obtained with previously published experimental results. The simulation runs in less than 10 min on a cluster with four GPUs.


The modifications of the three-dimensional Navier-Stokes equations, which I suggested earlier for the description of viscous fluid flows with large gradients of velocities, are considered. It is proved that the first initial-boundary value problem for these equations in any bounded three-dimensional domain has a compact minimal global B-attractor. Some properties of the attractor are established.


Author(s):  
Alexander R. Jung ◽  
Jürgen F. Mayer ◽  
Heinz Stetter

This paper presents a computational method for the calculation of unsteady three-dimensional viscous flow in turbo-machinery stages. The method is based on a Finite-Volume Navier-Stokes solver for structured grids in a multiblock topology. The meshes at the stator/rotor interface are overlapped by two grid cells. An implicit residual smoothing method applicable to global time-stepping is used to accelerate the solution process. The problem of periodic boundary treatment for unequal pitches is handled using a method of time-inclined computational domains for three dimensions. The method applies a time transformation to the stator domain and to the rotor domain and uses different time-steps in the two domains. The results of a numerical simulation of the flow in a transonic turbine stage with a pitch ratio of 1.364 are presented. The time-averaged solution is compared to experimental data and satisfactory agreement is stated. Complex 3D-unsteady flow phenomena (shock motion, vortex shedding) are observed. Unsteady blade pressure fluctuations at various positions in spanwise direction are shown and the fluctuations are found to vary considerably along span. Instantaneous distributions of static pressure, Mach number, and entropy are presented.


The study presents the heat transfer phenomena of steady buoyancy driven flows inside a three-dimensional square enclosure. The thermal boundary condition of this enclosure are the vertical side walls are maintained at constant temperature difference and all the other walls are adiabatic. Reynolds averaged Navier stokes (RANS) equations are used to model the flow phenomena inside the enclosure, these equations are discretized using finite difference method (FDM) based Fortran code which was developed in house. The study is done for varying Grashof numbers 105 ≤ Gr ≤ 107 and a constant Prandtl number 6.2. The results indicated that as the Grashof number increases the temperature along the enclosure decreases by 24.2% and the rate of transfer of heat inside the enclosure increased by 26%.


Sign in / Sign up

Export Citation Format

Share Document