Dispersive Mixing Consideration of Twin-Screw Compounding Scale-Up Methodologies

Author(s):  
Benjamin Dryer ◽  
Graeme Fukuda ◽  
Jake Webb ◽  
David I. Bigio ◽  
Mark Wetzel ◽  
...  

Twin-screw polymer extrusion has shown increased utility for creating composite materials. However, in order to achieve the desired product properties, sufficient mixing is essential. Dispersive mixing, or the breaking-up of particle agglomerates, is critical to create filled compounds with the required material properties. In a twin-screw compounding process, the Residence Stress Distribution (RSD) has been used to quantify the dispersive mixing induced by the stresses in the polymer melt. These stresses are quantified by the percent break-up of stress-sensitive polymeric beads. It was found that the amount of material that experiences the critical stress is a function of the operating conditions of screw speed and specific throughput [1]. The quantification of dispersive mixing allows for better control of a compounding process and can be used to design new processes. During the development of a new compounding process, screw geometries and operating conditions are often refined on a laboratory-scale extruder and then scaled up to a manufacturing level. Scale-up rules are used to translate the operating conditions of a process to different sizes of extruders. In a compounding process, the goal when scaling-up is to maintain the same material properties on both scales by achieving equivalent mixing. The RSD methodology can be used to evaluate the effectiveness of scale-up rules by comparison between two or more scales. This paper will demonstrate the utility of the RSD in evaluation of two unique scale-up rules. Conventional industry practice is based on the volumetric flow comparison between extruders. The proposed approach demonstrates that in order to maintain equivalent dispersive mixing between different sizes of extruders, the degree of fill, or the percent drag flow (%DF), must be kept equivalent in the primary mixing region. The effectiveness of both rules has been evaluated by experimental application of the RSD methodology. A design of experiment approach was used to generate predictive equations for each scale-up rule that were compared to the behavior of the original small-scale extruder. Statistical comparison of the two scale-up rules showed that the %DF rule predicted operating conditions on the large-scale extruder that produced percent break-up behavior more similar to the small-scale behavior. From these results, it can be concluded that the %DF scale-up rule can be used to accurately scale operating conditions between different-sized extruders to ensure similar dispersive mixing between two processes. This will allow for greater accuracy when recreating the material properties of a small-scale twin-screw compounding process on a larger, mass production machine.

2019 ◽  
Vol 876 ◽  
pp. 1108-1128 ◽  
Author(s):  
Till Zürner ◽  
Felix Schindler ◽  
Tobias Vogt ◽  
Sven Eckert ◽  
Jörg Schumacher

Combined measurements of velocity components and temperature in a turbulent Rayleigh–Bénard convection flow at a low Prandtl number of $Pr=0.029$ and Rayleigh numbers of $10^{6}\leqslant Ra\leqslant 6\times 10^{7}$ are conducted in a series of experiments with durations of more than a thousand free-fall time units. Multiple crossing ultrasound beam lines and an array of thermocouples at mid-height allow for a detailed analysis and characterization of the complex three-dimensional dynamics of the single large-scale circulation roll in a cylindrical convection cell of unit aspect ratio which is filled with the liquid metal alloy GaInSn. We measure the internal temporal correlations of the complex large-scale flow and distinguish between short-term oscillations associated with a sloshing motion in the mid-plane as well as varying orientation angles of the velocity close to the top/bottom plates and the slow azimuthal drift of the mean orientation of the roll as a whole that proceeds on a time scale up to a hundred times slower. The coherent large-scale circulation drives a vigorous turbulence in the whole cell that is quantified by direct Reynolds number measurements at different locations in the cell. The velocity increment statistics in the bulk of the cell displays characteristic properties of intermittent small-scale fluid turbulence. We also show that the impact of the symmetry-breaking large-scale flow persists to small-scale velocity fluctuations thus preventing the establishment of fully isotropic turbulence in the cell centre. Reynolds number amplitudes depend sensitively on beam-line position in the cell such that different definitions have to be compared. The global momentum and heat transfer scalings with Rayleigh number are found to agree with those of direct numerical simulations and other laboratory experiments.


Author(s):  
Tomas Nicak ◽  
Herbert Schendzielorz ◽  
Elisabeth Keim ◽  
Gottfried Meier

This paper describes numerical and experimental investigations on transferability of material properties obtained by testing of small scale specimens to a real component. The presented study is related to the experimental and analytical work performed on Mock-up3, which is one of three unique large scale Mock-ups tested within the European project STYLE. Mock-up3 is foreseen to investigate transferability of material data, in particular fracture mechanics properties. An important part of this work is to study constraint effects on different small scale specimens and to compare their fracture behaviour with the fracture behaviour of a large scale (component like) structure. The Mock-Up3 is an original part of a surge line made of low alloy steel 20 MnMoNi 5 5 (which corresponds to SA 508 Grade 3, Cl. 1). The goal of the test is to introduce stable crack growth of an inner surface flaw until a break through the wall occurs. To design such a test reliable fracture mechanics material properties must be available. Usually, these material data are obtained by testing small specimens, which are subsequently used for the assessment of a large scale structure (component). This is being done under the assumption that these “small scale” material properties are fully transferable to “large scale” components. It is assumed that crack initiation in the ductile tearing regime is rather independent of the crack shape, a/W ratio, loading condition or size of the specimen (constraint effects). In order to check the aforementioned assumption and to improve understanding of the physical process leading to failure of cracked components comprehensive experimental and analytical work is being undertaken in STYLE. This paper summarizes Up-To-Date available results, which have been achieved during the first 15 months of the project.


2013 ◽  
Vol 756-759 ◽  
pp. 4662-4667
Author(s):  
Jun Chen Li ◽  
Jie Sheng ◽  
Zhang Yu Fu

Loading of pressure vessel was usually complicated in practical service operating conditions. Simulation model of pressure vessel was built by method of finite element simulation analysis, and structured mesh generation was realized. Numerical calculation was come true, stress/strain distribution of pressure vessel was obtained in applying of the multi-load. On this basis, this condition compared with alone applied many loadings. The calculation results indicate the validity of this model, and results are evaluated according to relevant standards, which provide a way to study mechanical response in the actual working conditions. In addition, sub-model is analyzed for key part of pressure vessel, and transition is come true from large scale simulation to small scale simulation.


2015 ◽  
Author(s):  
Graeme Fukuda ◽  
David I. Bigio ◽  
Paul Andersen ◽  
Mark Wetzel

Author(s):  
Ling Zhen ◽  
Claudia del Carmen Gutierrez-Torres

The question of “where and how the turbulent drag arises” is one of the most fundamental problems unsolved in fluid mechanics. However, the physical mechanism responsible for the friction drag reduction is still not well understood. Over decades, it is found that the turbulence production and self-containment in a boundary layer are organized phenomena and not random processes as the turbulence looks like. The further study in the boundary layer should be able to help us know more about the mechanisms of drag reduction. The wavelet-based vector multi-resolution technique was proposed and applied to the two dimensional PIV velocities for identifying the multi-scale turbulent structures. The intermediate and small scale vortices embedded within the large-scale vortices were separated and visualized. By analyzing the fluctuating velocities at different scales, coherent eddy structures were obtained and this help us obtain the important information on the multi-scale flow structures in the turbulent flow. By comparing the eddy structures in different operating conditions, the mechanism to explain the drag reduction caused by micro bubbles in turbulent flow was proposed.


Author(s):  
Zhen Qian ◽  
Minghui Zhang ◽  
Hao Yu ◽  
Fei Wei

Radial profiles of particle velocity in a large scale (418 mm I.D.) downward Circulating Fluidized Bed (CFB downer) were obtained via a Laser Doppler Velocimetry (LDV) system. Results show that particle velocity is gradually increasing along the radial direction and there exists a peak value in the near wall region. Such unique radial profile shape can be explained by the solids accumulating trend in the near wall region of the downer. Experiment results in this large scale downer are also compared with those obtained by other researchers in small scale units so as to investigate the scale-up effect on the radial particle velocity distribution in the downer.


Author(s):  
R. Lo Frano ◽  
A. Pesetti ◽  
D. Aquaro ◽  
M. Olcese

Abstract The Direct Contact Condensation (DCC) is the main phenomenon characterizing the steam condensation. It plays an important role for the operation of Vacuum Vessel Pressure Suppression System (VVPSS) tanks, particularly for managing the Ingress of Coolant Event (determining fusion reactor overpressurization). It is safety relevant (key) system of the fusion reactor because by condensing the steam generated during such accident event allows to damp the overpressure. This paper deals with experimental and theoretical analyses of the DCC at sub-atmospheric pressure. The similitude analysis was elaborated to scale up the experimental results obtained in the reduced scale facility: similitude laws are used for the design of large experimental rig. Correlations are defined starting from the water temperature and pressure variation already obtained in the small-scale rig. Furthermore, the experimental rig and its main components accordingly designed (and under construction at the University of Pisa) allow to study at large scale the steam condensation. The testing conditions are presented and discussed.


2020 ◽  
Vol 9 (8) ◽  
pp. 140
Author(s):  
Logan Cochrane ◽  
John-Michael Davis

The literature on international non-governmental organizations (INGOs) has focused primarily on large INGOs, which capture the majority of total INGO spending but represent a small number of total INGOs. Over the past two decades, the number of INGOs has more than tripled throughout the global North, which has ushered in a decentralization of the sector as an emerging class of small- and medium-sized INGOs increasingly share the same space once occupied solely by large INGOs. This study focuses on these INGOs in transition to explore how they differ from large INGOs that receive significant government funding and their pathways to scale. Using an original dataset of 1371 Canadian INGOs, we explored comparative differences related to funding sources, overhead, organizational age, country coverage, staff, and religion between the transitioning and small-scale INGOs. Our results identified several general insights for how INGOs transition: (1) Large INGOs are less likely to articulate a religious motivation, which may impede government funding; (2) INGOs are more likely to be headquartered in Ontario, which is closer to federal government offices; (3) low overhead expenditures inhibit small-scale INGOs from transitioning to medium- and large-scale INGOs; (4) organizational age plays a critical factor to scale-up as INGOs increase their experience and expertise; (5) generous compensation to attract talented staff offers an under-valued pathway to scale. Finally, our results demonstrate the diversity among INGOs in Canada and problematizes singular scale-up pathways, while underscoring the necessity of future research to explore scaling strategies through individual case studies.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1452 ◽  
Author(s):  
Collings ◽  
Mckeown ◽  
Wang ◽  
Yu

While large-scale ORC power plants are a relatively mature technology, their application to small-scale power plants (i.e., below 10 kW) still encounters some technical challenges. Positive displacement expanders are mostly used for such small-scale applications. However, their built-in expansion ratios are often smaller than the expansion ratio required for the maximum utilisation of heat sources, leading to under expansion and consequently higher enthalpy at the outlet of the expander, and ultimately resulting in a lower thermal efficiency. In order to overcome this issue, one possible solution is to introduce an internal heat exchanger (i.e., the so-called regenerator) to recover the enthalpy exiting the expander and use it to pre-heat the liquid working fluid before it enters the evaporator. In this paper, a small-scale experimental rig (with 1-kW rated power) was designed and built that is capable of switching between regenerative and non-regenerative modes, using R245fa as the working fluid. It has been tested under various operating conditions, and the results reveal that the regenerative heat exchanger can recover a considerable amount of heat when under expansion occurs, increasing the cycle efficiency.


Author(s):  
Tomas Nicak ◽  
Herbert Schendzielorz ◽  
Elisabeth Keim ◽  
Gottfried Meier ◽  
Dominique Moinereau ◽  
...  

This paper describes new results of the STYLE study on investigations of transferability of fracture material properties obtained by testing of small scale specimens to a real component. In STYLE there are three large scale mock-up tests each of them dedicated to investigate specific effects. Mock-up3 (cladded ferritic pipe with the outer diameter of 424 mm) is foreseen to investigate transferability of material data, in particular to compare fracture mechanics behavior of small specimens under different constraint conditions with a full size component. The Mock-Up3 is an original part of a surge line made of low alloy steel (20MnMoNi55 which corresponds to SA 508 Grade 3, Cl. 1). Usually, material data necessary for fracture mechanic analyses are obtained by testing small specimens, which are subsequently used for the assessment of large scale structures (real components). This approach is believed to be conservative since the material properties are obtained on highly constrained standard specimens. In this paper new experimental and analytical results will be presented (including tests on constraint modified specimens and a comparison of these results with the Mock-up3 test). The overall objective is to investigate the influence of specimen size, crack shape and type of loading on fracture mechanics properties like crack initiation load or amount of the crack growth by means of numerical analyses and compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document