Finite Element Modeling and Experimental Study of Burr Formation in Drilling Processes

Author(s):  
Chara Efstathiou ◽  
Dimitrios Vakondios ◽  
Antonios Lyronis ◽  
Konstantinos Sofiakis ◽  
Aristomenis Antoniadis

Drilling is among the most significant manufacturing processes since it is widely used in the production of almost any product or part. Research in drilling processes and investigation of the phenomena that occur during the process is of great interest, given the fact that drilling is mainly applied at the final stages of the production process, thus it can greatly affect the total manufacturing cost. In the context of this study, a finite element model to simulate drilling and burr formation both on entrance and exit surface of the workpiece, was created. Simulation was implemented for the investigation of several combinations of cutting conditions, namely cutting speed and feed rate and the model was validated with a series of drilling experiments monitored by a high-speed camera.

2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 276 ◽  
Author(s):  
Muhammad Asad ◽  
Hassan Ijaz ◽  
Waqas Saleem ◽  
Abdullah Mahfouz ◽  
Zeshan Ahmad ◽  
...  

This contribution presents three-dimensional turning operation simulations exploiting the capabilities of finite element (FE) based software Abaqus/Explicit. Coupled temperature-displacement simulations for orthogonal cutting on an aerospace grade aluminum alloy AA2024-T351 with the conceived numerical model have been performed. Numerically computed results of cutting forces have been substantiated with the experimental data. Research work aims to contribute in comprehension of the end-burr formation process in orthogonal cutting. Multi-physical phenomena like crack propagation, evolution of shear zones (positive and negative), pivot-point appearance, thermal softening, etc., effecting burr formation for varying cutting parameters have been highlighted. Additionally, quantitative predictions of end burr lengths with foot type chip formation on the exit edge of the machined workpiece for various cutting parameters including cutting speed, feed rate, and tool rake angles have been made. Onwards, to investigate the influence of each cutting parameter on burr lengths and to find optimum values of cutting parameters statistical analyses using Taguchi’s design of experiment (DOE) technique and response surface methodology (RSM) have been performed. Investigations show that feed has a major impact, while cutting speed has the least impact in burr formation. Furthermore, it has been found that the early appearance of the pivot-point on the exit edge of the workpiece surface results in larger end-burr lengths. Results of statistical analyses have been successfully correlated with experimental findings in published literature.


2010 ◽  
Vol 143-144 ◽  
pp. 863-867
Author(s):  
Yong Tang ◽  
Qiang Wu ◽  
Xiao Fang Hu ◽  
Yu Zhong Li

The milling process of hard-to-cut material high manganese steel ZGMn13 was simulated and experimental studied based on Johnson-Cook material model and shear failure model.The high speed milling processing finite element model has established adopting arbitrary Lagrangian-Euler method (ALE) and the grid adaptive technology,The influence of milling parameters to milling force is analyzed in the high speed milling high manganese steel process. The simulated and experimental results being discussed are matched well. It certifies the finite element model is correct.


2014 ◽  
Vol 974 ◽  
pp. 389-393 ◽  
Author(s):  
Sen Liu ◽  
Dong Mei Wu ◽  
Jun Zhao

In orthopedic surgery, it is easy to do harm to surrounding tissues, so the study of bone cutting is necessary. In this article, a finite element model (FEM) of orthogonal bone cutting is developed. Cutting force intra-operatively can provide the surgeon with additional on-line information to support him to control quality of cutting surface. The obtained cutting force decreased little with cutting speed increasing, but ascended evidently with cutting depth increasing. The results of finite element simulations are aimed at providing optimization of cutting parameters and the basic information for hybrid force-velocity control of a robot-assisted bone milling system.


2013 ◽  
Vol 683 ◽  
pp. 556-559
Author(s):  
Bin Bin Jiao ◽  
Fu Sheng Yu ◽  
Yun Jiang Li ◽  
Rong Lu Zhang ◽  
Gui Lin Du ◽  
...  

In order to study the distribution of the stress field in the high-speed intermittent cutting process, finite element model of high-speed intermittent cutting is established. Exponential material model of the constitutive equation and adaptive grid technology are applied in the finite element analysis software AdvantEdge. The material processing is simulated under certain cutting conditions with FEM ( Finite Element Method ) and the distribution of cutting force, stress field, and temperature field are received. A periodic variation to the cutting force and temperature is showed in the simulation of high-speed intermittent cutting. Highest value of the milling temperature appears in front contacting area of the knife -the chip.and maximum stress occurs at the tip of tool or the vicinity of the main cutting edge. The analysis of stress and strain fields in-depth is of great significance to improve tool design and durability of tool.


Author(s):  
Chiara Silvestri ◽  
Louis R. Peck ◽  
Kristen L. Billiar ◽  
Malcolm H. Ray

A finite element model of knee human ligaments was developed and validated to predict the injury potential of occupants in high speed frontal automotive collisions. Dynamic failure properties of ligaments were modeled to facilitate the development of more realistic dynamic representation of the human lower extremities when subjected to a high strain rate. Uniaxial impulsive impact loads were applied to porcine medial collateral ligament-bone complex with strain rates up to145 s−1. From test results, the failure load was found to depend on ligament geometric parameters and on the strain rate applied. The information obtained was then integrated into a finite element model of the knee ligaments with the potential to be used also for representation of ligaments in other regions of the human body. The model was then validated against knee ligament dynamic tolerance tests found in literature. Results obtained from finite element simulations during the validation process agreed with the outcomes reported by literature findings encouraging the use of this ligament model as a powerful and innovative tool to estimate ligament human response in high speed frontal automotive collisions.


Sign in / Sign up

Export Citation Format

Share Document