Particle Image Velocimetry Measurements Near the Onset of Cavitation in a Converging-Diverging Glass Nozzle

Author(s):  
Aaron Schmidt ◽  
B. Terry Beck ◽  
Mohammad H. Hosni

Water flow through a converging-diverging glass nozzle experiences a pressure drop and its velocity increases as it flows through the converging section. For an inviscid fluid, the pressure minimum occurs at the nozzle throat, where the cross-sectional area is minimum. If the minimum pressure is below the water vapor pressure, cavitation may occur. The actual minimum pressure through a converging-diverging nozzle depends on many factors and may not occur at the nozzle throat. Additionally, fluid through the nozzle may be driven into the metastable region and subsequently cavitate at a lower pressure than the vapor pressure. All of these factors combine to create a complex and unsteady flow pattern. The precise conditions leading to the onset of cavitation in water flowing in a converging-diverging nozzle are not well understood. Utilization of a clear glass converging-diverging nozzle enabled Particle Image Velocimetry (PIV) measurements of the velocity vector field inside the nozzle without significantly promoting premature cavitation formation. Glass spheres of 10 μm diameter were selected as seed particles for use in the PIV measurements. These seed particles did not significantly affect the formation (or onset) of cavitation in the nozzle; however, larger seed particles (120 μm diameter) provided nucleation sights and promoted cavitation prematurely. The seed particles were injected into the flow significantly upstream from the nozzle to prevent disrupting the flow entering the nozzle. High seed density was needed to supply enough seed particles to interrogate small regions near the nozzle wall; however, high seed density could also cause speckling and reduce the ability to produce meaningful PIV measurements. A Nd:YAG laser provided illumination of the seed particles in the nozzle. Laser reflections off of the nozzle exterior had to be minimized to avoid saturating the PIV camera. A polarizing filter was installed on the camera to reduce reflections. An enclosure that surrounded the nozzle was also designed and utilized. The enclosure was filled with water to reduce laser reflections off of the nozzle exterior wall. The time elapsed between frames had to be adjusted for each section of the nozzle interrogated with PIV. For accurate velocity measurements, particles needed to travel at least two particles diameters but less than 25% of each interrogation cell. The large variation in velocities present in the nozzle prevented one time interval from satisfying the seed particles displacement requirements. The time interval between frames had to be tailored to each section of the nozzle, depending upon the range of velocities seen in that section. Detailed measurement of the velocity profile near the nozzle throat required precise control over all timing parameters and pushed the available hardware to its smallest possible time interval. Detailed PIV measurements near the wall in regions of recirculation and at the cavitation front required the use of a long-distance microscope. This limited the field of view and necessitated a high seed particle density, which presented problems due to the lack of control over the flow of the seed particles in the near wall region. PIV allowed for the measurement of the velocity vector field inside a converging-diverging nozzle without disrupting the flow. These measurements provided detailed velocity and flow pattern information throughout the nozzle, particularly in the regions near the cavitation front where boundary layer separation was observed along with regions of recirculating flow. These detailed velocity profiles were compiled to present a complete PIV analysis of the converging-diverging glass nozzle. Measurements of the velocity field near cavitation onset allowed for a better understanding of the conditions triggering cavitation and the degree to which the water flow was able to be driven into the metastable region.

Author(s):  
A A Oner

Offshore pipelines are buried in the seabed to be protected from the damage caused by hydrodynamic forces or by human activities. However, because of soil erosion and interaction of currents with the pipeline on the moveable seabed, the processes of local scouring and, sometimes, self-burial of pipelines take place. To increase the rate and extent of scouring, the technique of attaching a spoiler to the pipeline has been developed. In this study, two-dimensional, steady, turbulent flow around a horizontal pipeline with a spoiler near a smooth wall is investigated experimentally by using the particle image velocimetry technique. The effect of the spoiler was examined for the Reynolds numbers of ReD=840, 1500, 4150, and 9500 based on the pipe diameter. The effect of the spoiler on the process of scouring is investigated through the parameters of the measured instantaneous and time-averaged patterns of the velocity vector field and the streamline topology. The results indicated that the attachment of the spoiler to the pipeline increases the length of the upstream and downstream separation regions and it is also observed that the spoiler does not significantly increase the rate of the flow that passes through the gap and the shear stress acting on the seabed.


Author(s):  
Abbas Ghasemi ◽  
Vesselina Roussinova ◽  
Ronald Barron ◽  
Ram Balachandar

Particle image velocimetry measurements are carried out to study the entrainment at the interface between the non-turbulent and turbulent regions in a square jet. Jet Reynolds number based on the hydraulic diameter of the jet is 50,000. Measurements cover up to 25 diameters downstream of the nozzle exit using five horizontal field-of-views in the central plane of the jet. The turbulent/non-turbulent interface is identified using a velocity criterion and a suitable thresholding method. Using vorticity and swirling strength it is shown that the turbulent/non-turbulent interface separates the rotational and irrotational regions of the flow. Instantaneous velocity vector field superimposed with the turbulent/non-turbulent interface are presented. The relation between the vortex cores in the vicinity of the turbulent/non-turbulent interface and the contractions and expansions noticed in the jet velocity field are explained. Entrainment into the jet is evaluated at each axial distance by identifying the points falling inside the turbulent region of the jet. Compared to a round jet, the square jet entrains more ambient fluid. In addition, normal volume fluxes going through the turbulent/non-turbulent interface of the square jet are found to be larger compared to that of a round jet.


2000 ◽  
Author(s):  
Joseph M. Bauer ◽  
David J. Beebe

Abstract A technique for determining the three dimensional motions of hydrogel structures in microchannels is introduced. In developing this technique, we have adapted microscopic particle image velocimetry (μPIV), a method for measuring velocity fields in microfluidic devices. The motions of 1 μm fluorescent seed particles that are incorporated into a hydrogel microstructure (200 μm tall × 400 μm diameter) are tracked over several expansion cycles using microscopy. Combining measurements taken in different planes produces a three-dimensional representation of the motions present during volume changes can be reconstructed. By providing cross sections of the local deformation rates in hydrogel microstructures, this technique allows for the optimization of device designs as well as providing a better understanding of the processes by which hydrogels change volume under mechanical constraints.


2005 ◽  
Author(s):  
R. E. Foster ◽  
T. A. Shedd

A novel technique of microscopic Particle Image Velocimetry (PIV) is presented for two-phase annular, wavy-annular and stratified flow. Seeding of opaque particles in a water/dye flow allows the acquisition of instantaneous film velocity data in the film cross-section at the center of the tube in the form of digital image pairs. An image processing algorithm is also described that allows numerical velocities to be distilled from particle images by commercial PIV software. The approach yields promising results for stratified and wavy-annular flows, however highly bubbly flows remain difficult to image and post-process. Initial data images are presented in raw and processed form.


Author(s):  
Jianjun Feng ◽  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

The truly time-variant unsteady flow in a low specific speed radial diffuser pump stage has been investigated by time-resolved Particle Image Velocimetry (PIV) measurements. The measurements are conducted at the midspan of the blades for the design condition and also for some severe part-load conditions. The instantaneous flow fields among different impeller channels are analyzed and compared in detail, and more attention has been paid to flow separations at part-load conditions. The analysis of the measured results shows that the flow separations at two adjacent impeller channels are quite different at some part-load conditions. The separations generally exhibit a two-channel characteristic.


Author(s):  
Mathias Vermeulen ◽  
Cedric Van Holsbeke ◽  
Tom Claessens ◽  
Jan De Backer ◽  
Peter Van Ransbeeck ◽  
...  

An experimental and numerical platform was developed to investigate the fluidodynamics in human airways. A pre operative patient specific geometry was used to create an identical experimental and numerical model. The experimental results obtained from Particle Image Velocimetry (PIV) measurements were compared to Computational Fluid Dynamics (CFD) simulations under stationary and pulsatile flow regimes. Together these results constitute the first step in predicting the clinical outcome of patients after lung surgeries such as Lung Volume Reduction.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Rym Chaker ◽  
Mouldi Kardous ◽  
Mahmoud Chouchen ◽  
Fethi Aloui ◽  
Sassi Ben Nasrallah

Flange height is between the geometric features that contribute efficiently to improve the diffuser aerodynamic performances. Results obtained from wind tunnel experiments, particle image velocimetry (PIV) measurements, and numerical simulations reveal that at the diffuser inlet section, the wind velocity increases as the flange height increases. Nevertheless, there is an optimal ratio (flange height/inlet section diameter, Hopt/Da ≈ 0.15) beyond it, the flange height effect on the velocity increase diminishes. This behavior can be explained by both the positions of the two contra-rotating vortices generated downstream of the diffuser and the pressure coefficient at their centers. Indeed, it was found that, as the flange height increases, the two vortices move away from each other in the flow direction and since the flange height exceeds (Hopt/Da), they became too distant from each other and from the flange. While the pressure coefficients at the vortices' centers increase with (H/Da), attain a maximum when (Hopt/Da) is reached, and then decrease. This suggests that the wind velocity increase depends on the pressure coefficient at the vortices' centers. Therefore, it depends on the vortices' locations which are in turn controlled by the flange height. In practice, this means that the diffuser could be more efficient if equipped with a control system able to hold the vortices too near from the flange.


Author(s):  
Eugene Suk ◽  
Daniel K. Fetter ◽  
Pierre E. Sullivan

Particle Image Velocimetry (PIV) measurements were performed within an optical water analog engine. A unique triggering and data collection system was developed to allow a CCD camera to acquire two consecutive image frames at predetermined crank angles. The water analog engine operated at 15 RPM and had a square cross-section with two circular valved inlets. Measurements were made throughout an entire cycle to determine mean and turbulence statistics and results at 60 crank angle degree are discussed in this paper. Different averaging techniques were used and results between the techniques were compared to provide a number of statistical quantities having large discrepancies in scales and distributions. A study of the equations of motion showed that different averaging techniques results in differing physical interpretations of the flow.


Author(s):  
Jule Scharnke ◽  
Rene Lindeboom ◽  
Bulent Duz

Breaking waves have been studied for many decades and are still of interest as these waves contribute significantly to the dynamics and loading of offshore structures. In current MARIN research this awareness has led to the setup of an experiment to determine the kinematics of breaking waves using Particle Image Velocimetry (PIV). The purpose of the measurement campaign is to determine the evolution of the kinematics of breaking focussed waves. In addition to the PIV measurements in waves, small scale wave-in-deck impact load measurements on a fixed deck box were carried out in the same wave conditions. To investigate the link between wave kinematics and wave-in-deck impact loads, simplified loading models for estimating horizontal deck impact loads were applied and compared to the measured impact loads. In this paper, the comparison of the model test data to estimated loads is presented.


Sign in / Sign up

Export Citation Format

Share Document