Turbulence Measurements Within a Cyclic Flow and Analysis in the Momentum Equation

Author(s):  
Eugene Suk ◽  
Daniel K. Fetter ◽  
Pierre E. Sullivan

Particle Image Velocimetry (PIV) measurements were performed within an optical water analog engine. A unique triggering and data collection system was developed to allow a CCD camera to acquire two consecutive image frames at predetermined crank angles. The water analog engine operated at 15 RPM and had a square cross-section with two circular valved inlets. Measurements were made throughout an entire cycle to determine mean and turbulence statistics and results at 60 crank angle degree are discussed in this paper. Different averaging techniques were used and results between the techniques were compared to provide a number of statistical quantities having large discrepancies in scales and distributions. A study of the equations of motion showed that different averaging techniques results in differing physical interpretations of the flow.

2005 ◽  
Author(s):  
R. E. Foster ◽  
T. A. Shedd

A novel technique of microscopic Particle Image Velocimetry (PIV) is presented for two-phase annular, wavy-annular and stratified flow. Seeding of opaque particles in a water/dye flow allows the acquisition of instantaneous film velocity data in the film cross-section at the center of the tube in the form of digital image pairs. An image processing algorithm is also described that allows numerical velocities to be distilled from particle images by commercial PIV software. The approach yields promising results for stratified and wavy-annular flows, however highly bubbly flows remain difficult to image and post-process. Initial data images are presented in raw and processed form.


Author(s):  
Jianjun Feng ◽  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

The truly time-variant unsteady flow in a low specific speed radial diffuser pump stage has been investigated by time-resolved Particle Image Velocimetry (PIV) measurements. The measurements are conducted at the midspan of the blades for the design condition and also for some severe part-load conditions. The instantaneous flow fields among different impeller channels are analyzed and compared in detail, and more attention has been paid to flow separations at part-load conditions. The analysis of the measured results shows that the flow separations at two adjacent impeller channels are quite different at some part-load conditions. The separations generally exhibit a two-channel characteristic.


Author(s):  
Mathias Vermeulen ◽  
Cedric Van Holsbeke ◽  
Tom Claessens ◽  
Jan De Backer ◽  
Peter Van Ransbeeck ◽  
...  

An experimental and numerical platform was developed to investigate the fluidodynamics in human airways. A pre operative patient specific geometry was used to create an identical experimental and numerical model. The experimental results obtained from Particle Image Velocimetry (PIV) measurements were compared to Computational Fluid Dynamics (CFD) simulations under stationary and pulsatile flow regimes. Together these results constitute the first step in predicting the clinical outcome of patients after lung surgeries such as Lung Volume Reduction.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Rym Chaker ◽  
Mouldi Kardous ◽  
Mahmoud Chouchen ◽  
Fethi Aloui ◽  
Sassi Ben Nasrallah

Flange height is between the geometric features that contribute efficiently to improve the diffuser aerodynamic performances. Results obtained from wind tunnel experiments, particle image velocimetry (PIV) measurements, and numerical simulations reveal that at the diffuser inlet section, the wind velocity increases as the flange height increases. Nevertheless, there is an optimal ratio (flange height/inlet section diameter, Hopt/Da ≈ 0.15) beyond it, the flange height effect on the velocity increase diminishes. This behavior can be explained by both the positions of the two contra-rotating vortices generated downstream of the diffuser and the pressure coefficient at their centers. Indeed, it was found that, as the flange height increases, the two vortices move away from each other in the flow direction and since the flange height exceeds (Hopt/Da), they became too distant from each other and from the flange. While the pressure coefficients at the vortices' centers increase with (H/Da), attain a maximum when (Hopt/Da) is reached, and then decrease. This suggests that the wind velocity increase depends on the pressure coefficient at the vortices' centers. Therefore, it depends on the vortices' locations which are in turn controlled by the flange height. In practice, this means that the diffuser could be more efficient if equipped with a control system able to hold the vortices too near from the flange.


Author(s):  
Jule Scharnke ◽  
Rene Lindeboom ◽  
Bulent Duz

Breaking waves have been studied for many decades and are still of interest as these waves contribute significantly to the dynamics and loading of offshore structures. In current MARIN research this awareness has led to the setup of an experiment to determine the kinematics of breaking waves using Particle Image Velocimetry (PIV). The purpose of the measurement campaign is to determine the evolution of the kinematics of breaking focussed waves. In addition to the PIV measurements in waves, small scale wave-in-deck impact load measurements on a fixed deck box were carried out in the same wave conditions. To investigate the link between wave kinematics and wave-in-deck impact loads, simplified loading models for estimating horizontal deck impact loads were applied and compared to the measured impact loads. In this paper, the comparison of the model test data to estimated loads is presented.


Author(s):  
Tufan Arslan ◽  
Stefano Malavasi ◽  
Bjørnar Pettersen ◽  
Helge I. Andersson

The present work is motivated by phenomena occurring in the flow field around structures partly submerged in water. A three dimensional unsteady flow around a rectangular cylinder is studied for four different submergence ratios by using computational fluid dynamics (CFD) tools with LES turbulence model. Simulation results are compared to particle image velocimetry (PIV) measurements at Reynolds number Re = 12100 and Froude number Fr = 0.26. Focus in our investigation is on the characterization of the behaviour of vortex structures generated by separated flow. Another target in the study is to obtain better knowledge of the hydrodynamic forces acting on a semi-submerged structure. Computed force coefficients are compared with experimental measurements.


2009 ◽  
Vol 23 (03) ◽  
pp. 353-356
Author(s):  
CHIUAN-TING LI ◽  
KEH-CHIN CHANG ◽  
MUH-RONG WANG

The spatio-temporal correlations in a turbulent planar mixing layer are acquired using the particle image velocimetry. Estimation of convection speed is recommended to be made with the spatio-temporal correlations of fluctuating vorticity. The spatial correlation can be deduced from the temporal correlation through the use of the Taylor's hypothesis when applied to the region without apparent dominant frequency.


Author(s):  
Hervé Bonnard ◽  
Ludovic Chatellier ◽  
Laurent David

An experimental study of vortex shedding on a hydrofoil Eppler 817 was conducted using two-dimensional two components Particle Image Velocimetry. This foil section’s characteristics are adapted for naval applications but sparsely documented. The characterization of the flow modes was realized based on statistical data such as the mean velocity field and the standard deviation of the vertical velocities. The data were acquired at very low Reynolds number which are not often covered for such hydrofoil and at four angles of attack ranging from 2◦ to 30◦. A map of different characteristic flow modes was made for this space of parameters and was used to identify flow configurations exhibiting particular dynamics.


Author(s):  
Lei Wang ◽  
Mirko Salewski ◽  
Bengt Sunde´n

Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart. For the perforated ribs, the slit height is 20% of the rib height, and the open-area ratio is 16%. We discuss the flow in terms of mean velocity, streamlines, vorticity, turbulence intensity, and Reynolds shear stress. We find that the recirculation bubbles after the perforated ribs are significantly smaller than those after the solid ribs. The reattachment length after perforated ribs is smaller by about 45% compared with the solid ribs. In addition, the Reynolds shear stresses around the perforated ribs are significantly smaller than in the solid rib case, leading to a reduction of the pressure loss in the perforated rib case.


Sign in / Sign up

Export Citation Format

Share Document