plunging jets
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Giorgio Moscato ◽  
Giovanni Paolo Romano

Plunging jets are used in many industrial and civil applications, as for example in sewage and water treatment plants, in order to enhance aeration and mass transfer of volatile gases. They are also observed in natural processes as rivers self-purification, waterfalls and weirs. Many investigations dealt with the plunging jets in different configurations, but the dependence on Reynolds number and jet geometry were still not sufficiently addressed. For example, Mishra et al. (2020) studied an oblique submerged water impinging jet at different nozzle-to-plate distances and impingement angles, but only at a rather small Reynolds numbers (2600). On the other hand, different jet geometries have been extensively considered, but not for the plunging jet configuration (Mi, 2000; Hashiehbaf &Romano, 2013). In this work, plunging water jets issuing in air from orifices of different shape are considered. The aim of the work is to detail and compare jet behaviors in terms of velocity fields generated after impacting the air-water interface, as a function of Reynolds number and orifice geometry. However, air bubbles entrainment is mainly avoided in order to study the jet characteristics in a simpler case and use it as a reference starting point for future works.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 856
Author(s):  
Ishita Shrivastava ◽  
Edward Eric Adams ◽  
Bader Al-Anzi ◽  
Aaron Chunghin Chow ◽  
Jongyoon Han

Confined plunging jets are investigated as potential outfalls for the discharge of desalination brine. Compared to offshore submerged outfalls that rely on momentum to induce mixing, plunging jets released above the water surface utilize both momentum and negative buoyancy. Plunging jets also introduce air into the water column, which can reduce the possibility of hypoxic zones. In contrast to unconfined plunging jets, confined plunging jets include a confining tube, or downcomer, around the jet, which increases the penetration depth of the bubbles and can provide better aeration. However, the presence of this downcomer can hinder mixing with surrounding water. Therefore, laboratory measurements of dilution are reported here and compared to the dilution of unconfined plunging jets. In addition, qualitative observations of bubble penetration depth are also used to discuss aeration potential. For designs that increase the bubble penetration depth as compared to unconfined plunging jets, results show that dilution decreases as the depth of the downcomer is increased. However, it is shown that confined plunging jets can be designed with a short downcomer to provide higher dilution than unconfined jets. The effect of the diameter of downcomer on dilution is also investigated and a non-monotonic effect is observed.


2021 ◽  
Vol 137 ◽  
pp. 103579
Author(s):  
José M. Carrillo ◽  
Francisca Marco ◽  
Luis G. Castillo ◽  
Juan T. García

Author(s):  
Roy A. Pillers ◽  
Theodore J. Heindel

Abstract Plunging jets occur when a liquid stream enters a slower moving or stationary liquid body after first passing through a gaseous region. The most commonly studied plunging jet structure is that of water entering water. Plunging jets have been studied in order to understand and model mixing and transport from the atmosphere into the liquid. Shear forces at the edge of the jet cause air entrainment both in the free jet and at the impact point on the pool surface. Plunging jet applications range from large scale environments, such as ocean waves, waterfalls, wastewater treatment, and dams, to small scale environments, such as liquid-gas fuel mixing, mineral separation, and molten metal pouring. The majority of the literature today involve facilities designed to approximate an infinite liquid pool; few of these studies take into account the compression effects prevalent in several of the real systems. Therefore, a tank has been developed for the visualization of plunging jet flows with varying pool depth. This study involved the creation of a 32 cm by 32 cm, 91.4 cm deep rectangular acrylic tank with an interior adjustable acrylic bottom for the visualization of plunging jet flows with bottom compression effects. The pool height was held constant using a secondary tank with an overflow weir. In this study high-speed backlit images were taken of the plunging jet region. Preliminary results indicate that there is a significant change in both the shape and estimated entrained air volume when the plunging jet is subjected to compression effects. This is attributed to the plate spreading the bubble plume and allowing for easier bubble rise.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 696
Author(s):  
Aaron C. Chow ◽  
Ishita Shrivastava ◽  
E. Eric Adams ◽  
Fahed Al-Rabaie ◽  
Bader Al-Anzi

Laboratory experiments were conducted to measure entrained air bubble penetration depth and dilution of a dense vertical unconfined plunging jet to evaluate its performance as an outfall to dilute brine from desalination plants as well as a means to aerate water column. Experiments involved neutrally buoyant or dense plunging jets discharging in quiescent receiving water. The density difference between effluent and receiving water, the plunging jet length (height above water surface), and the receiving water salinity were varied in the experiments. Observed penetration depth for neutrally buoyant jets was somewhat greater than previously reported, and increased modestly with jet density. Increasing density also resulted in an increasing number of fine bubbles descending together with the dense plume. These observations can help guide the design of plunging jets to mitigate anoxic conditions in the water column when brine is introduced to a receiving water body, as with seawater desalination.


Author(s):  
A Bosman ◽  
G R Basson

The erosive power of a free-falling high-velocity water jet, flowing from a dam spillway, could create a scour hole downstream of the dam, endangering the foundation of the dam. Despite extensive research since the 1950s, there is presently no universally agreed method to predict accurately the equilibrium scour depth caused by plunging jets at dams. These formulae yield a large range of equilibrium scour dimensions. The hydrodynamics of plunging jets and the subsequent scour of a rectangular, horizontal and vertical fissured rock bed were investigated in this study by means of a physical model. Equilibrium scour hole geometries for different fissured dimensions (simulated with rectangular concrete blocks tightly prepacked in a regular rectangular matrix), for a range of flow rates, plunge pool depths, and dam height scenarios were experimentally established with 31 model tests. From the results, non-dimensional formulae for the scour hole geometry were developed using multi-linear regression analysis. The scour depth results from this study were compared to various analytical methods found in literature. The equilibrium scour hole depth established in this study best agrees with that predicted by the Critical Pressure method.


2019 ◽  
Author(s):  
MICHELE PALERMO ◽  
FABIAN A BOMBARDELLI ◽  
SIMONE PAGLIARA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document