Trajectory Generation and Control of a Mobile Robot in the Environment of Obstacles

Author(s):  
Ho-Hoon Lee

This paper proposes a path-planning control scheme for a mobile robot navigating through multiple obstacles. The proposed control consists of a trajectory generation scheme and a motion control scheme. The trajectory generation scheme computes the translational and rotational reference velocities in real time that drive the robot to a given goal position while avoiding multiple obstacles. The trajectory generation scheme is insensitive to high-frequency measurement noises. The motion control scheme computes the driving force and rotational torque required for the robot to track the reference velocities. The nonholonomic constraints of the mobile robot are used in the design of the kinematic trajectory generation scheme, where a repulsive potential function is used for obstacle avoidance. The dynamic model of the robot is used in the design of the motion control scheme. In the control design, the Lyapunov stability theorem is used as a mathematical design tool. Under certain conditions, the proposed control guarantees asymptotic stability while keeping all internal signals bounded. The effectiveness of the proposed control method has been shown with realistic computer simulations.

Author(s):  
Ho-Hoon Lee

In this paper, a path-generating motion control scheme is proposed for a unicycle-type wheeled mobile robot navigating through multiple obstacles. The proposed motion control scheme computes the driving force and rotational torque of the robot in real time that drive the robot to a given goal position while avoiding multiple obstacles. The nonholonomic constraints as well as the dynamic equations of the mobile robot are used in the design of the motion control scheme, where a repulsive potential function is used for obstacle avoidance. In the control design, the Lyapunov stability theorem is used as a mathematical design tool. Under certain conditions, the proposed control guarantees asymptotic stability while keeping all internal signals bounded. The effectiveness of the proposed control method has been shown with realistic computer simulations.


Author(s):  
Ho-Hoon Lee

Abstract This paper proposes a V-shape Lyapunov function method with application to the design of a control scheme for a mobile robot navigating through multiple obstacles. The proposed design method solves the serious problem of input saturation due to big position errors in the beginning of the control associated with the conventional parabolic Lyapunov function method. The resulting control consists of a trajectory generation scheme and a motion control scheme. The trajectory generation scheme computes the translational and rotational reference velocities in real time that drive the robot to a given goal position while avoiding multiple obstacles. The motion control scheme computes the driving force and rotational torque to track the reference velocities. The nonholonomic constraints of the mobile robot are used in the design of the kinematic trajectory generation scheme, where a repulsive potential function is used for obstacle avoidance. The dynamic model of the robot is used in the design of the motion control scheme. Under certain conditions, the proposed control guarantees asymptotic stability while keeping all internal signals bounded. The effectiveness of the proposed control method has been shown with realistic computer simulations.


Author(s):  
Dong-Hun Lee ◽  
Duc-Quan Tran ◽  
Young-Bok Kim

In this study, a motion control problem for the vessels towed by tugboats or towing ships on the sea is considered. The towed vessels including barge ships are need to have assistance of tugboats. Combining two vessels, some work purposes in the sea or harbor area can be completed. In this study, the authors give newly developed mathematical model and control system strategy. Especially, the system model fully presenting the physical characteristics of two vessels are derived. For controlling the system effectively, it is considered that the towed vessel has no power propulsion system but the rudder is activated to improve the maneuverability. Considering the strong nonlinearities included in the vessel dynamics, the modelled system is presented by nonlinear system without linearization of nonlinear parameters. Thus, the control system for the towed vessel is designed based on the nonlinear control scheme. Exactly, the back-stepping control method is applied to its motion control. Also, the PID control method is applied for comparing with the proposed control strategy.


Author(s):  
Ho-Hoon Lee

This paper proposes a trajectory control method for a carlike four-wheeled mobile robot. First, a kinematic control scheme is designed based on the nonholonomic kinematic constraints of a mobile robot, in which reference driving speed and steering angle are computed for a given desired trajectory of the robot. This kinematic control scheme, generating the reference speed and steering angle, can be applied to unmanned vehicle control with a robot driver. Second, a new backstepping trajectory control scheme is designed based on the robot dynamics subject to the nonholonomic kinematic constraints, in which the desired driving force and steering torque are computed for a given desired trajectory. In this study, the Lyapunov stability theorem is used as a mathematical design tool. The proposed control guarantees asymptotic stability of the trajectory control while keeping all internal signals bounded. Finally, the validity of the theoretical results is shown by realistic computer simulations with one sampling delay in the control loop.


Author(s):  
Yi Liang ◽  
Ho-Hoon Lee

In this study, a decoupled controller, consisting of a force controller and a torque controller, is designed to achieve a smooth translational and rotational motion control of a group of nonholonomic mobile robots. The proposed controller also solves the problem of obstacle avoidance, where obstacles with arbitrary boundary shapes are taken into account. Since the tangential direction of obstacle boundary is adopted as the guiding direction of a robot, the proposed controller allows a mobile robot to escape from a concave obstacle, while the robot could be trapped with most of the conventional obstacle avoidance algorithms.


Author(s):  
Dong-Hun Lee ◽  
Tran-Duc Quan ◽  
Young-Bok Kim

In this study, a motion control problem for the vessels towed by tugboats or towing ships on the sea is considered. The towed vessels including barge ships are need to have assistance of tugboats. Combining two vessels, some work purposes in the sea or harbor area can be completed. In this study, the authors give newly developed mathematical model and control system strategy. Especially, the system model fully presenting the physical characteristics of two vessels are derived. For controlling the system effectively, it is considered that the towed vessel has no power propulsion system but the rudder is activated to improve the maneuverability. Considering the strong nonlinearities included in the vessel dynamics, the modelled system is presented by nonlinear system without linearization of nonlinear parameters. Thus, the control system for the towed vessel is designed based on the nonlinear control scheme. Exactly, the back-stepping control method is applied to its motion control. Also, the PID control method is applied for comparing with the proposed control strategy.


2010 ◽  
Vol 44-47 ◽  
pp. 321-325
Author(s):  
Liang Hua ◽  
Lin Lin Lv ◽  
Ju Ping Gu ◽  
Yu Jian Qiang

The key technilogies of ship-welding mobile robot applied to ship-building in plane block production line were researched and realized. The mechanical structure design of the robot was completed. The motion-controlling system of of two-wheel differential driving mobile robot was developed. A novel precision positioning control method of welding torch using ultrasonic motors was putforward. The mechanism and control-driven system of precision positioning system for welding torch were completed. The platform of obstacle avoidance navigation system was designed and the strategies of seam tracking, trajectory and posture adjustment were preliminary studied. The methods and results put forward in the paper could act as the base of deep research on the theories and technologies of ship-welding mobile robot.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Martin Udengaard ◽  
Karl Iagnemma

An omnidirectional mobile robot is able, kinematically, to move in any direction regardless of current pose. To date, nearly all designs and analyses of omnidirectional mobile robots have considered the case of motion on flat, smooth terrain. In this paper, an investigation of the design and control of an omnidirectional mobile robot for use in rough terrain is presented. Kinematic and geometric properties of the active split offset caster drive mechanism are investigated along with system and subsystem design guidelines. An optimization method is implemented to explore the design space. The use of this method results in a robot that has higher mobility than a robot designed using engineering judgment. A simple kinematic controller that considers the effects of terrain unevenness via an estimate of the wheel-terrain contact angles is also presented. It is shown in simulation that under the proposed control method, near-omnidirectional tracking performance is possible even in rough, uneven terrain.


Sign in / Sign up

Export Citation Format

Share Document