Improving Motion Stability of the Plane 3-RPR Parallel Manipulator at Singular Configuration

Author(s):  
Yu-Tong Li ◽  
Yu-Xin Wang

Kinematic parameters have significant influences on the motion stability of parallel manipulators at singular configureations. Taking the plane 3-RPR parallel manipulator as an example, the motion stability at different types of singular configurations corresponding to the angular speed and velocity of the movable platform are investigated. At first, the second order of uncoupled dynamics equation for the 3-RPR parallel manipulator is established with the aid of the second class Lagrange approach. According to the Lyapunov first approximate stability criterion, the approximate conditions for the 3-RPR parallel manipulator with a stabile motion at singular configurations are determined based on the Gerschgorin circle theorem. Next, the exact Hurwitz criterion is utilized to study the motion stability and the load capability of the manipulator corresponding to the angular speed and velocity of the movable platform, as well as the directions of the external forces at two kinds of singular configurations: with a gained rotation-type DOF, and with a gained translation-type DOF, respectively. The results show that increasing both the angular speed and the velocity of the mass center of the movable platform can efficiently improve the motion stability of the 3-RPR parallel manipulator at singular configurations.

2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Xin-Jun Liu ◽  
Chao Wu ◽  
Jinsong Wang

Singularity analysis is one of the most important issues in the field of parallel manipulators. An approach for singularity analysis should be able to not only identify all possible singularities but also explain their physical meanings. Since a parallel manipulator is always out of control at a singularity and its neighborhood, it should work far from singular configurations. However, how to measure the closeness between a pose and a singular configuration is still a challenging problem. This paper presents a new approach for singularity analysis of parallel manipulators by taking into account motion/force transmissibility. Several performance indices are introduced to measure the closeness to singularities. By using these indices, a uniform “metric” can be found to represent the closeness to singularities for different types of nonredundant parallel manipulators.


Author(s):  
Li Yu-Tong ◽  
Wang Yu-Xin

With the aid of the Liyapunov first approximate stability criterion, the dynamic stability condition for the 3-RPR parallel mechanism to realize a deterministic motion at singular configurations is deduced. Based on this condition, the distributions of the kinematic parameters including input velocities and accelerations of the system corresponding to the stable motion at its singular configuration are investigated then. It is found that for a given singular configuration, increasing input velocities and accelerations, the sub-distributions of eigenvalues with positive real parts have a tendency to shrink and, consequently, the motion stability at the singular configuration can be enhanced; adjusting input velocities and accelerations only can not necessarily get all negative real parts of the eigenvalues sharing a common intersection of the distributing subintervals and, normally, the additional adjustment of initial velocities of the particle system should be added. Besides, while the movable platform goes through the singular configuration, if the control law of the input parameters makes the instantaneous velocity center of the movable platform far away from the singular point, the platform is able to go through the singular configuration with high stability and strong capability to resist external disturbances. This research indicates the effectiveness to improve the motion stability of the dynamics system at singular configurations via adjusting the input kinematic parameters. From this, a singularity-free approach via adjusting the input kinematic parameters can be utilized to exclude singularities of parallel mechanisms dynamically in the joint trajectory planning stage without introducing either redundancy or active mass.


2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Sébastien Briot ◽  
Vigen Arakelian

In the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favorable force distribution, i.e., the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along with the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS.


Author(s):  
Xianwen Kong ◽  
Cle´ment Gosselin ◽  
James M. Ritchie

A quadratic parallel manipulator refers to a parallel manipulator with a quadratic characteristic polynomial. This paper revisits the forward displacement analysis (FDA) of a linearly actuated quadratic spherical parallel manipulator. An alternative formulation of the kinematic equations of the quadratic spherical parallel manipulator is proposed. The singularity analysis of the quadratic spherical parallel manipulator is then dealt with. A new type of singularity of parallel manipulators — leg actuation singularity — is identified. If a leg is in a leg actuation singular configuration, the actuated joints in this leg cannot be actuated even if the actuated joints in other legs are released. A formula is revealed that produces a unique current solution to the FDA for a given set of inputs. The input space is also revealed for the quadratic spherical parallel manipulator in order to guarantee that the robot works in the same assembly mode. This work may facilitate the control of the quadratic spherical parallel manipulator.


Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Raffaele Di Gregorio

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.


2010 ◽  
Vol 143-144 ◽  
pp. 308-312 ◽  
Author(s):  
Yi Cao ◽  
Hui Zhou ◽  
Bao Kun Li ◽  
Shen Long ◽  
Meng Si Liu

This paper mainly addresses the principle of the singularity elimination of the Stewart parallel platform. By adding appropriate redundant actuation, the rank of the Jacobian matrix of the parallel platform is always full, accordingly the singular value of the Jacobian matrix of the parallel platform is nonzero. Then the singular configuration of the parallel platform can be eliminated by adding one redundant actuation. Numerical examples are taken to illuminate the principle’s effectiveness. It is shown that not only singular configurations of the Stewart parallel platform can be eliminated, but also performances of kinematics and dynamics of the parallel platform can be greatly perfected by adding appropriate redundant actuation.


Author(s):  
Hao Li ◽  
Yuru Zhang ◽  
Yi Yang

A method to calculate the volume of constant-orientation taskspace of parallel manipulators is developed and applied on the 6-RSS mechanism as an example. The taskspace is defined as a singularity-free reachable workspace. Quasi-singularity measure is used to measure the closeness to singular configurations and construct the quasi-singularity zone. Analyzed by DOE (Design of Experiment), effect weighs of design variables of a parallel manipulator are revealed and experiment results are applied in the optimization process. In order to obtain the maximum taskspace, the volume of the constant-orientation taskspace is optimized by a structured optimization process aided by iSIGHT-FD software. Finally, constant-orientation taskspace of greater volume is obtained.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Xianwen Kong

This paper deals with the forward displacement analysis and singularity analysis of a special 2-DOF 5R spherical parallel manipulator, in which the angle between the axes of any two adjacent revolute joints is a right angle. An alternative formulation of the kinematic equations of the 5R spherical parallel manipulator is proposed. A formula is then derived to produce directly the unique current solution to the forward displacement analysis of the 5R spherical parallel manipulator. It will also be addressed to keep the spherical parallel manipulator in the same working mode and assembly mode by simply restraining the range of an input angle. Unlike other parallel manipulators, the 5R spherical parallel manipulator always undergoes self-motion in a type-II singular configuration, and the 3R leg of the 5R spherical parallel manipulator also always undergoes self-motion in a type-I singular configuration.


1970 ◽  
Vol 41 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Soheil Zarkandi

Finding Singular configurations (singularities) is one of the mandatory steps during the design and control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined that causes serious problems both to static behavior and to motion control of the mechanism. This paper addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be used to find all types of singularities occurring in this type of manipulators.Key Words: Planar parallel manipulators; Redundant manipulators; Singularity analysis; Jacobian matrices.DOI: 10.3329/jme.v41i1.5356Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 1-6


2004 ◽  
Vol 126 (6) ◽  
pp. 1006-1016 ◽  
Author(s):  
C. H. Liu ◽  
Shengchia Cheng

In this study a procedure to obtain direct singular positions of a 3RPS parallel manipulator is presented. If the heights of three spherical joints, denoted by d1n,d2n, and d3n respectively, are used as coordinate axes, then the workspace of the moving platform may be represented as an inclined solid cylinder in this coordinate system. The location of a point on the solid circular cylinder determines a configuration of the manipulator’s moving platform. The procedure to locate direct singular positions consists of two steps, the orientation of the moving platform is assumed first, from which the horizontal position of the moving platform may be obtained. Then in the second step the heights that make determinant of the Jacobian matrix vanish may always be determined. Results show that unless the moving platform is normal to the base, in which case there exist only one or two singular configurations, otherwise there are always three singular configurations corresponding to a moving platform’s orientation.


Sign in / Sign up

Export Citation Format

Share Document