A Study of the Aerodynamics of a Helicopter Rotor Blade

Author(s):  
Mohammad Khairul Habib Pulok ◽  
Uttam K. Chakravarty

Abstract In any congested area, where a fixed-wing aircraft cannot perform, rotary-wing counterparts are the best-suited option for its vertical take-off and landing capacity. The vibration induced by the rotor blade is a significant problem in helicopter performances. Rotor aerodynamic loading, rotor dynamics, and fuselage dynamics are the elements that contribute to the vibration of a helicopter. Among these elements, the key reason for the helicopter vibration is the aerodynamic loading. Determining aerodynamic loading is one of the most important criteria to design a rotor blade and to minimize vibration. Rotor harmonic airloads are generated from the rapid variation of flow around the rotor blade due to the vortex wake. A rapid drop in the circulation near the blade tip causes tip vortices which are the reason for the maximum lift at the tip of the blade. Consequently, tip vortices become the primary source of harmonic airloads. In this study, a specimen of Bo 105 helicopter rotor blade is considered to observe the aerodynamic characteristics under the external flow of air. The coefficients of lift and drag of the specimen for different angles of attack and azimuth angles are estimated. The resonance frequencies and the mode shapes are obtained. Computational results are validated by the experimental analyses of a small-scaled model of the rotor blade. From the study, the coefficient of lift is found to increase with the angle of attack up to a critical value. Similarly, the coefficient of drag increases with the angle of attack. The resonance frequencies significantly change with scaling the rotor blade.

Author(s):  
Pratik Sarker ◽  
Uttam K. Chakravarty

Abstract The helicopter is an essential means of transport for numerous tasks including carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. While in operation, the nature of the unsteady aerodynamic environment surrounding the rotor blades gives rise to a significant amount of vibration to the helicopter. In this study, the unsteady forced response of the Bo 105 hingeless helicopter rotor blade is investigated at the forward flight in terms of the coupled flapping, lead-lag, and torsional deformations. The mathematical model for the steady-state response of the rotor blade is modified to include the unsteady airfoil behavior by using the Theodorsen’s lift deficiency function for three degrees of freedom of motion. The nonlinear mathematical model is solved by the generalized method of lines in terms of the time-varying deflections of the rotor blade. The unsteady airloads are found to create larger deformations compared to that of the steady-state condition for a given advance ratio. The azimuth locations of the peak loadings also vary with different degrees of freedom. The first three natural frequencies and mode shapes of the rotor blade are presented. The model for the forced response analysis is validated by finite element results.


Author(s):  
Pratik Sarker ◽  
Colin R. Theodore ◽  
Uttam K. Chakravarty

The helicopter is an essential and unique means of transport nowadays and needs to hover in space for considerable amount of time. During hovering flight, the rotor blades continuously bend and twist causing an increased vibration level that affects the structural integrity of the rotor blade leading to ultimate blade failure. In order to predict the safe allowable vibration level of the helicopter rotor blade, it is important to properly estimate and monitor the vibration frequencies. Therefore, the mathematical model of a realistic helicopter rotor blade composed of composite material, is developed to estimate the characteristics of free and forced bending-torsion coupled vibration. The cross-sectional properties of the blade are calculated at first and are then included in the governing equations to solve the mathematical model. The natural frequencies and mode shapes of the composite helicopter rotor blade are evaluated for both the nonrotating and rotating cases. The time-varying bending and torsional deflections at the helicopter rotor blade tip are estimated with suitable initial conditions. The validation of the model is carried out by comparing the analytical frequencies with those obtained by the finite element model.


Sign in / Sign up

Export Citation Format

Share Document