Analysis and Design of an Auxiliary Catching Arm for an Apple Picking Robot

Author(s):  
Andrew Porter ◽  
Jassim Alhamid ◽  
Changki Mo ◽  
John Miller ◽  
Joseph Iannelli ◽  
...  

Abstract The newly designed 3-dimensional catching robot consists of three revolute joints where the forward linkage is a parallelogram mechanism for keeping the catching end-effector parallel to the picking manipulator’s base. A virtual apple field of 505 apples, designed to test the picking abilities of 7 DOF arm, was used to determine the capabilities of this new catching arm design. The target catching efficiency was 90% for the provided virtual apple field with a maximum drop height of 30 cm. The target coordinates for each virtual apple were found by computer simulation in MATLAB. Geometric parameters were selected such that the catching manipulator could reach every possible drop position in the picking manipulator’s workspace. The design was completed, fabricated, and validated, utilizing the elegant mechanical linkage design. The workspace analysis showed that it had an acceptable 93% catching efficiency, and as the drop height increased, the efficiency approaches 100%. Definitive inverse-kinematics provided exact joint angles required to catch all catchable apples inside of the workspace. Using these angles, the general equation of motion, using Lagrangian mechanics, yielded the required torque outputs of each of the three motors on the arm. Validation of these torques through laboratory experimentation was considered adequate.

Author(s):  
Sunil Kumar Agrawal ◽  
J. Rambhaskar

Abstract This paper deals with Jacobian singularities of free-floating open-chain planar manipulators. The problem, in essence, is to find the joint angles where the Jacobian mapping between the end-effector rates and the joint rates is singular. In the absence of external forces and couples, for free-floating manipulators, the linear and angular momentum are conserved. This makes the singular configurations of free-floating manipulators different from structurally similar fixed-base manipulators. In order to illustrate this idea, we present a systematic method to obtain the singular solutions of a free-floating series-chain planar manipulator with revolute joints. We show that the singular configurations are solutions of simultaneous polynomial equations in the half-tangent of the joint variables. From the structure of these polynomial equations, we estimate the upper bound on the number of singularities of free-floating planar manipulators and compare these with analogous results for structurally similar fixed-base manipulators.


2017 ◽  
Vol 33 (2) ◽  
pp. 176-181 ◽  
Author(s):  
Trent M. Guess ◽  
Swithin Razu ◽  
Amirhossein Jahandar ◽  
Marjorie Skubic ◽  
Zhiyu Huo

The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.


Structural Analysis is a branch which involves in the determination of behaviour of structures so as to predict the responses of different structural components due to impact of loads. ETABS (Extended 3 Dimensional Analysis of Building Systems) is a software which is incorporated with all the major analysis engines that are static, dynamic, linear and non-linear etc. The main purpose of this paper is to design Multi-storeyed building with a static method, since an effective design and construction of earthquake resistant structures are important all over the world. This project deals with seismic effect on “analysis, design and comparison of multi-storey residential building of stilt+17 floors in zone-iii and zone-iv using ETABS”. It is an attempt to study the behaviour of a residential building using ETABS in different zones and areas with same soil bearing capacity. Analysis and design has been carried out as per IS1843-2002 (Part-1) and IS 456:2000. The more drifts and displacements have been noticed in zone 4 compared to zone 3


2021 ◽  
Vol 165 ◽  
pp. 104426
Author(s):  
Ishan Chawla ◽  
P.M. Pathak ◽  
Leila Notash ◽  
A.K. Samantaray ◽  
Qingguo Li ◽  
...  

Author(s):  
William S. Rone ◽  
Pinhas Ben-Tzvi

This paper presents a generalized method of determining the static shape conformation of a cable-driven serpentine robot. Given a set of desired cable displacements as model inputs, the model calculates the joint angles and cable tensions that result from those displacements. The model’s governing equations are derived from ensuring static equilibrium at each of the robot’s revolute joints, along with compatibility equations ensuring the joint angles result in the desired cable displacements. Elastic, actuation and gravitational loading are included in the model, and the results analyze the relative impact of each for various combinations of cable displacement inputs. In addition, the impact of elasticity and mass distribution on the accuracy of purely kinematic constant-curvature segment models is presented. In addition, the model also accommodates limits for the serpentine joint angles. The model is implemented in MATLAB, and results are generated to analyze the impact of the actuation, elastic and gravitational effects. Future work will include inertial effects in the model to make it dynamic. These models will be used as the foundation for a serpentine tail design for use on-board a mobile robot, and for task planning to enable that tail to be effectively used in various scenarios.


Author(s):  
Muhammad Alfian Jauhari ◽  
Muhammad Akid Musyafa ◽  
Muhammad Dzulfikar Fauzi ◽  
Bambang Sugiantoro

Competition in today's business world is getting tougher and raises the number of changes, in which the changes occur more rapidly. Because of that the ability and skills of human resources should also be able to learn quickly to adapt the changes in business world. Therefore, entrepreneur needs a tool that can give the effect of teaching and improve the ability of decision-making and reduce the financial risk for businesses. This research aims to develop a game which can do business simulation. In the process of developing this game, SpringRTS framework is used to maintain the development. There are some steps being taken, which originated from the literature study followed by analysis and design requirements and proceed with expressing ideas that have been done on the analysis and design steps into a tangible form, which includes 3d modeling, uv texture mapping, 3d assembling and coding with the Lua programming language. This research successfully produces business simulation game that can give the effect of teaching in a game without compromising the beauty of the graphics aspect according to research output which made a simulation game with 3 dimensional graphics which make the user whom played it did not easy to became bored.


Author(s):  
G Carbone ◽  
R Nakadate ◽  
J Solis ◽  
M Ceccarelli ◽  
A Takanishi ◽  
...  

1992 ◽  
Vol 114 (3) ◽  
pp. 433-437 ◽  
Author(s):  
M. Subramaniam ◽  
S. N. Kramer

The Tetrahedron Based Variable Geometry Truss Manipulator is comprised of a series of tetrahedrons stacked upon one another in a spiraling manner. When one link of each “cell” is made variable in length, the system can be effectively used as a remote manipulator. The manipulator is kinematically equivalent to a serial link manipulator consisting only of revolute joints where the angle between successive axes is 120°. In this paper, a closed-form analytic solution for the six-celled (6R series) variable geometry truss manipulator is obtained. It is shown that a sixteenth order polynomial in one of the joint angles is found which leads to at most sixteen solutions.


Sign in / Sign up

Export Citation Format

Share Document