Workspace analysis and design of large-scale cable-driven printing robot considering cable mass and mobile platform orientation

2021 ◽  
Vol 165 ◽  
pp. 104426
Author(s):  
Ishan Chawla ◽  
P.M. Pathak ◽  
Leila Notash ◽  
A.K. Samantaray ◽  
Qingguo Li ◽  
...  
1999 ◽  
Vol 39 (4) ◽  
pp. 55-60 ◽  
Author(s):  
J. Alex ◽  
R. Tschepetzki ◽  
U. Jumar ◽  
F. Obenaus ◽  
K.-H. Rosenwinkel

Activated sludge models are widely used for planning and optimisation of wastewater treatment plants and on line applications are under development to support the operation of complex treatment plants. A proper model is crucial for all of these applications. The task of parameter calibration is focused in several papers and applications. An essential precondition for this task is an appropriately defined model structure, which is often given much less attention. Different model structures for a large scale treatment plant with circulation flow are discussed in this paper. A more systematic method to derive a suitable model structure is applied to this case. Results of a numerical hydraulic model are used for this purpose. The importance of these efforts are proven by a high sensitivity of the simulation results with respect to the selection of the model structure and the hydraulic conditions. Finally it is shown, that model calibration was possible only by adjusting to the hydraulic behaviour and without any changes of biological parameters.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 632
Author(s):  
Xiaozheng Wang ◽  
Minglun Zhang ◽  
Hongyu Zhou ◽  
Xiaomin Ren

The performance of the underwater optical wireless communication (UOWC) system is highly affected by seawater´s inherent optical properties and the solar radiation from sunlight, especially for a shallow environment. The multipath effect and degradations in signal-to-noise ratio (SNR) due to absorption, scattering, and ambient noises can significantly limit the viable communication range, which poses key challenges to its large-scale commercial applications. To this end, this paper proposes a unified model for underwater channel characterization and system performance analysis in the presence of solar noises utilizing a photon tracing algorithm. Besides, we developed a generic simulation platform with configurable parameters and self-defined scenarios via MATLAB. Based on this platform, a comprehensive investigation of underwater channel impairments was conducted including temporal and spatial dispersion, illumination distribution pattern, and statistical attenuation with various oceanic types. The impact of ambient noise at different operation depths on the bit error rate (BER) performance of the shallow UOWC system was evaluated under typical specifications. Simulation results revealed that the multipath dispersion is tied closely to the multiple scattering phenomenon. The delay spread and ambient noise effect can be mitigated by considering a narrow field of view (FOV) and it also enables the system to exhibit optimal performance on combining with a wide aperture.


2017 ◽  
Vol 50 (1) ◽  
pp. 3287-3293 ◽  
Author(s):  
Erik Frisk ◽  
Mattias Krysander ◽  
Daniel Jung

Author(s):  
Andrew Porter ◽  
Jassim Alhamid ◽  
Changki Mo ◽  
John Miller ◽  
Joseph Iannelli ◽  
...  

Abstract The newly designed 3-dimensional catching robot consists of three revolute joints where the forward linkage is a parallelogram mechanism for keeping the catching end-effector parallel to the picking manipulator’s base. A virtual apple field of 505 apples, designed to test the picking abilities of 7 DOF arm, was used to determine the capabilities of this new catching arm design. The target catching efficiency was 90% for the provided virtual apple field with a maximum drop height of 30 cm. The target coordinates for each virtual apple were found by computer simulation in MATLAB. Geometric parameters were selected such that the catching manipulator could reach every possible drop position in the picking manipulator’s workspace. The design was completed, fabricated, and validated, utilizing the elegant mechanical linkage design. The workspace analysis showed that it had an acceptable 93% catching efficiency, and as the drop height increased, the efficiency approaches 100%. Definitive inverse-kinematics provided exact joint angles required to catch all catchable apples inside of the workspace. Using these angles, the general equation of motion, using Lagrangian mechanics, yielded the required torque outputs of each of the three motors on the arm. Validation of these torques through laboratory experimentation was considered adequate.


Author(s):  
Bo Tao ◽  
Xingwei Zhao ◽  
Sijie Yan ◽  
Han Ding

Safety and reliability are significant in the sense of robotic machining for large-scale workpieces. In this article, a control scheme is proposed to ensure the safe motion of the mobile robot. Screw theory is used to analyze the motion of the mobile robot. The mobile platform with Mecanum wheels can be considered as a mechanism with four driven screws in series. An auxiliary reference position of the mobile platform is calculated based on the kinematic model, and the motion of the mobile platform and robot arm can be decoupled to handle its redundant degrees of freedom. Constant speed control is investigated to reduce the interaction force between the robot and platform. Experiments are conducted on the mobile robotic machining task for a large-scale wind turbine blade. The mobile robot moves steadily and smoothly owing to the constant speed control with an auxiliary target.


2005 ◽  
Vol 128 (1) ◽  
pp. 146-154 ◽  
Author(s):  
Kazunori Ikeda ◽  
Toshio Hirano ◽  
Tatsuo Yamashita ◽  
Makoto Mikami ◽  
Hitoshi Sakakida

Direct lubrication tilting pad journal bearings (DLTPJ bearings) have rarely been applied to large-scale rotating machinery, such as turbines or generators, whose journal diameters are more than 500mm. In this paper, static and dynamic characteristics of a 580mm(22.8in.) diameter DLTPJ bearing were studied experimentally using a full-scale bearing test rig. In the static test, distribution of metal temperature, oil film pressure, and bearing loss were measured in changing oil flow rate, with mean bearing pressure ranging up to 2.9MPa. The maximum metal temperature of the DLTPJ bearing was compared to that of a conventional flood lubrication bearing, and it was confirmed that the direct lubrication could increase load capacity. In the dynamic test, spring and damping coefficients of oil film were obtained by exciting the bearing casing that was floated by air bellows. These data will be used for analysis and design of steam turbine rotors and their bearing systems. Also, vibration of pads was investigated because metal failure on upper pads due to vibration has been found in some actual machines. In order to generate oil film pressure on the surface of upper pads, a Rayleigh-step was machined there, and it was confirmed that vibration was reduced by the Rayleigh-step.


Sign in / Sign up

Export Citation Format

Share Document