Comparison of UGV Position Estimation Equipped With GNSS-RTK and GPS Using EKF
Abstract Site assessments for bifacial Photovoltaic (PV) installation are quite challenging to conduct manually due to the area size and the extreme temperature conditions at desert sites. We designed and built an autonomous Unmanned Ground Vehicle (UGV) fitted with a Global Navigation Satellite Network-System Real-Time Kinematic (GNSS-RTK) positioning device, an Inertial Measurement Unit (IMU), encoder to improve and aid site assessments in desert condition. Sandy terrains deserts are challenging for UGV’s because they increase the likelihood of wheel slippage due to reduced traction. Sensor details such as IMU, GNSS-RTK, and encoder should be taken into consideration to account for the errors that the desert terrains pose. This study compared the Extended Kalman Filter (EKF) for standard GPS & GNSS-RTK to verify which performs better for the UGV’s position estimation. The estimated UGV’s position from the kinematics model and EKF are validated using a drone camera system that uses an image processing technique to verify the UGV’s position with the help of the visible reference cones. Throughout the experiments, the GNSS-RTK performed better than GPS. Also, the EKF performed as well as the GNSS-RTK by trusting it more than the encoder/gyroscope reading.