Predicting the Combustion Phasing of a Natural Gas Spark Ignition Engine Using the K-Nearest Neighbors Algorithm

2020 ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Location of the peak cylinder pressure and the crank angle associated with half of the energy releases during the combustion process are generally used to define the engine combustion phasing and control the engine efficiency. To accelerate the optimization of a natural gas spark ignition internal combustion engine, this study proposes a black box modeling approach that will reduce the experimental or computational time needed to estimate the high efficient operating conditions at a particular engine speed and load via combustion phasing information. Specifically, a k-nearest neighbors (KNN) algorithm applied key engine operating variables such as the spark timing, air-fuel ratio, and engine speed as inputs to predict combustion phasing parameters such as the crank angles associated with peak cylinder pressure and 50% energy release. After training the correlative model, the selected engine variables produced acceptable errors for most operating conditions investigated. The results showed that the KNN algorithm predicted much better the location of the peak pressure than the location of the 50% energy release, as evidenced by the larger R2 values and smaller prediction errors. In addition, the regression model built in this study produced larger errors in the sparse-distributed region. Therefore, a more uniformly distributed training dataset is suggested for KNN algorithm, at least for the situations investigated in this research.

2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu ◽  
Christopher Ulishney

Abstract Existing compression ignition engines can be modified to spark ignition configuration to increase the use of natural gas in the heavy-duty transportation sector. A better understanding of the premixed natural gas combustion inside the original diesel chamber (i.e., flat-head-and-bowl-in-piston) will help improve the conversion process and therefore accelerate the diesel engine conversion. Previous studies indicated that the burning process in such engines is a two-stage combustion with a fast burning inside the bowl and a slower burning inside the squish. This paper used experimental and numerical results to investigate the combustion process at a more advanced spark timing representative of ultra-lean medium-load operation, which placed most of the combustion inside the compression stroke. At such operating conditions, the high turbulence intensity inside the squish region accelerated the flame propagation inside the squish region to the point that the burn inside the bowl separated less from that inside the squish region. However, several individual cycles produced a double-peak energy-release with the peak locations closer to the only one heat release peak seen in the average cycle. Moreover, RANS CFD simulations indicated that the time at which the flame entered the squish region was near the peak location of the energy-release process for the conditions investigated here. As a result, the data suggests that the double-peak seen in the apparent heat release rate was the result of the cycle-by-cycle variation in the flame propagation.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Increased utilization of natural-gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduce greenhouse-gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOx, CO, and HC emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing, engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late burn (including double-peak heat release rate) was observed for advanced spark timing. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3 %), moderate rate of pressure rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Author(s):  
Fazal Um Min Allah ◽  
Caio Henrique Rufino ◽  
Waldyr Luiz Ribeiro Gallo ◽  
Clayton Barcelos Zabeu

Abstract The flex-fuel engines are quite capable of running on gasohol and hydrous ethanol. However, the in-cylinder cyclic variations, which are inherently present in spark-ignition (SI) engines, affect the performance of these engines. Therefore, a comprehensive analysis is required to evaluate the effects of in-cylinder cyclic variations of a flex-fuel engine. The experiments were carried out by using Brazilian commercial Gasohol E27 (mixture of 27% anhydrous ethanol in gasoline) and hydrous ethanol E95h (5% water by volume in ethanol) as fuels for a commercial flex-fuel spark ignition engine. A comparison between the cyclic variations of gasohol and hydrous ethanol is presented in this paper. Moreover, the effects of engine operating parameters (i.e., engine speed, engine load and relative air fuel ratio) on cyclic variations are also investigated. The acquired data of in-cylinder pressure and combustion durations are evaluated by carrying out a statistical analysis. The coefficient of variation for indicated mean effective pressure (IMEP) did not exceed the limit of 5% for all tested conditions. Higher cyclic variability of maximum in-cylinder pressure is observed for gasohol fuel and higher engine speeds. The variability of in-cylinder combustion is also evaluated with the help of different combustion stages, which are characterized by corresponding crank positions of 10%, 50% and 90% mass fractions burned.


Author(s):  
Lorenzo Gasbarro ◽  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu ◽  
Luca Ambrogi ◽  
...  

Abstract Investigations using laboratory test benches are the most common way to find the technological solutions that will increase the efficiency of internal combustion engines and curtail their emissions. In addition, the collected experimental data are used by the CFD community to develop engine models that reduce the time-to-market. This paper describes the steps made to increase the reliability of engine experiments performed in a heavy-duty natural-gas spark-ignition engine test-cell such as the design of the control and data acquisition system based on Modbus TCP communication protocol. Specifically, new sensors and a new dynamometer controller were installed. The operation of the improved test bench was investigated at several operating conditions, with data obtained at both high- and low-sampling rates. The results indicated a stable test bench operation.


Author(s):  
Jinlong Liu ◽  
Cosmin Emil Dumitrescu

Increased utilization of natural gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduced greenhouse gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOX, CO, and hydrocarbon (HC) emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing (ST), engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late-burn (including double-peak heat release rate) was observed for advanced ST. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3%), moderate rate of pressure-rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


2015 ◽  
Vol 161 (2) ◽  
pp. 78-88
Author(s):  
Zdzisław STELMASIAK ◽  
Jerzy LARISCH ◽  
Dariusz PIETRAS

The paper presents the results of investigations performed on a Fiat 1.3 MultiJet engine fueled with natural gas (CNG) and diesel oil. The primary aim was to determine the influence of a small additive of natural gas on the exhaust gas opacity under variable engine operating conditions. The tests were performed for the engine work points n–Mo (engine speed– torque) reproducing the NEDC cycle. The selection of the work points was carried out according to the criterion of greatest share in the NEDC homologation test, covering the entire engine field of work used in the realization of the test on a chassis dynamometer. In the tests, the authors applied different energy shares of natural gas in the range 15–35.6%. The smoke opacity was analyzed in the FSN and mass scales [mg/m3 ]. The results of the investigations may be used in the design of electronic controllers for natural gas engines and in the adaptation engines to CNG fueling.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110310
Author(s):  
Erdal Tunçer ◽  
Tarkan Sandalci ◽  
Saban Pusat ◽  
Özgün Balcı ◽  
Yasin Karagöz

In this study, cycle-skipping was investigated for a natural gas engine which has single cylinder, unsupercharged with 1.16 L volume and spark ignition. Additionally, inlet manifold air was switched off during cycle-skipping to minimize pumping losses. Thus, cycle-skipping strategy was carried out, and its effects on emission and engine performance were investigated. Indicated mean effective pressure, indicated efficiency, specific emissions (CO, HC, and NOX) and combustion characteristics (in-cylinder pressure and rate of heat release) were investigated in the study. As a result of performed study, it is predicted that a significant improvement can be achieved in indicated thermal efficiency as 22.8% and 13.4% by different cycle-skipping strategies. However, there is not a continuous change in emissions for different cycle-skipping strategies. While CO and NOX emissions increased in 3N1S (three normal, one cycle-skip) condition, HC emissions decreased in accordance with normal condition. For both cycle-skipping strategies, all the emissions have an increase in accordance with normal condition. In 3N1S and 2N1S (two normal, one cycle-skip) cycle skip engine operating conditions, compared to engine operating under normal condition, CO emissions increased by 14.7 and 51.7 times, respectively. In terms of HC emissions, while emission values decreased by 27.8% under 3N1S operating conditions, they increased by 67.2% under 2N1S operating conditions. Finally, in 3N1S and 2N1S cycle skip engine operating conditions, NOx emissions increased by 3.7 and 6.9 times, respectively, compared to normal operating condition. Another significant result of this study is that peak in-cylinder pressure increased as the cycle-skipping rate increased.


Sign in / Sign up

Export Citation Format

Share Document