scholarly journals The influence of natural gas additive on the smoke level generated by diesel engines

2015 ◽  
Vol 161 (2) ◽  
pp. 78-88
Author(s):  
Zdzisław STELMASIAK ◽  
Jerzy LARISCH ◽  
Dariusz PIETRAS

The paper presents the results of investigations performed on a Fiat 1.3 MultiJet engine fueled with natural gas (CNG) and diesel oil. The primary aim was to determine the influence of a small additive of natural gas on the exhaust gas opacity under variable engine operating conditions. The tests were performed for the engine work points n–Mo (engine speed– torque) reproducing the NEDC cycle. The selection of the work points was carried out according to the criterion of greatest share in the NEDC homologation test, covering the entire engine field of work used in the realization of the test on a chassis dynamometer. In the tests, the authors applied different energy shares of natural gas in the range 15–35.6%. The smoke opacity was analyzed in the FSN and mass scales [mg/m3 ]. The results of the investigations may be used in the design of electronic controllers for natural gas engines and in the adaptation engines to CNG fueling.

Author(s):  
Patrick Lott ◽  
Olaf Deutschmann

AbstractHigh engine efficiency, comparably low pollutant emissions, and advantageous carbon dioxide emissions make lean-burn natural gas engines an attractive alternative compared to conventional diesel or gasoline engines. However, incomplete combustion in natural gas engines results in emission of small amounts of methane, which has a strong global warming potential and consequently makes an efficient exhaust gas aftertreatment system imperative. Palladium-based catalysts are considered as most effective in low temperature methane conversion, but they suffer from inhibition by the combustion product water and from poisoning by sulfur species that are typically present in the gas stream. Rational design of the catalytic converter combined with recent advances in catalyst operation and process control, particularly short rich periods for catalyst regeneration, allow optimism that these hurdles can be overcome. The availability of a durable and highly efficient exhaust gas aftertreatment system can promote the widespread use of lean-burn natural gas engines, which could be a key step towards reducing mankind’s carbon footprint.


Author(s):  
Marco Altosole ◽  
Giovanni Benvenuto ◽  
Ugo Campora ◽  
Michele Laviola ◽  
Raphael Zaccone

The article shows the performance comparison between two marine engines, fuelled by natural gas and diesel oil, respectively, both belonging to the ‘Bergen’ engine series of Rolls-Royce Marine, suitable as prime movers for ship propulsion. Two different simulation codes, one for each engine, validated by means of geometrical and performance data provided by the manufacturer, have been developed to extend the comparison to the whole working area of the examined engines. Although the maximum continuous power is very similar (about 2 MW at the same rotational speed), some differences exist in size, efficiency and pollutant emissions of the two types of engines. The reasons are investigated through a specific thermodynamic analysis, aimed to explain such differences, in terms of efficiency and emissions (particularly carbon dioxide), when varying the working conditions. The analysis is carried out by comparing the respective real cycles, at the same working condition, and repeating the comparison for different engine delivered powers and rotational speeds. In addition, a study of the different modes of combustion is developed to explain the major differences found in the emissions of nitrogen oxides.


1999 ◽  
Vol 122 (4) ◽  
pp. 611-616 ◽  
Author(s):  
Daniel B. Olsen ◽  
Charles E. Mitchell

Current research shows that the only hazardous air pollutant of significance emitted from large bore natural gas engines is formaldehyde CH2O. A literature review on formaldehyde formation is presented focusing on the interpretation of published test data and its applicability to large bore natural gas engines. The relationship of formaldehyde emissions to that of other pollutants is described. Formaldehyde is seen to have a strong correlation to total hydrocarbon (THC) level in the exhaust. It is observed that the ratio of formaldehyde to THC concentration is roughly 1.0–2.5 percent for a very wide range of large bore engines and operating conditions. The impact of engine operating parameters, load, rpm, spark timing, and equivalence ratio, on formaldehyde emissions is also evaluated. [S0742-4795(00)01004-8]


2019 ◽  
Vol 33 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Kianoush Kosravi-Darani ◽  
Fatemeh Yazdian ◽  
Fatemeh Babapour ◽  
A. R. Amirsadeghi

Reducing the total cost of poly(3-hydroxybutyrate) (PHB) production as an attractive substitute for conventional petrochemical plastics still remains an unsolved problem. The aim of this research was the screening of PHB-producing microorganisms and selection of the best suitable medium for microbial growth and PHB production from methane. A new isolated methanotroph for PHB production from natural gas was studied in different media. After selection of the suitable medium, the effect of five process variables (content of nitrogen source, disodium hydrogen phosphate, methane to air ratio, seed age, and pH) on PHB production was investigated in a bubble column bioreactor. Also, hydrodynamic and mass transfer factors (flow regime, mixing time, gas hold up, and kLa) were considered. At optimum operating conditions and engineering parameters in a bubble column, PHB content in the dried biomass reached 25 % w/w. The results showed that pH is the most important variable in the selected conditions.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4432 ◽  
Author(s):  
Doğan ◽  
Kutlar ◽  
Javadzadehkalkhoran ◽  
Demirci

The results of experiments performed by gasoline and natural gas fuels in a single cylinder research engine were evaluated in this study. The main objective of this study is to compare exhaust gas emissions, efficiency, and burn durations for both fuels in stoichiometric and lean mixture. At the same time, cycle to cycle variation in these operating conditions should not exceed an acceptable value. In the ultra-lean mixture, gasoline fuel exceeded this determined limit before Compressed Natural Gas (CNG). Therefore, the reduction in NO was restricted by cyclic variations. In combustion analysis, although the burn duration of the gasoline in stoichiometric conditions was shorter than CNG, this situation reversed in favor of CNG in the ultra-lean mixtures. Contrary to some studies in the literature, the spark advance and ignition delay for CNG were the same or shorter than gasoline in this study. The primary reasons for this change are the high compression ratio and the different combustion chamber geometry. The increase in turbulence intensity has different effects on CNG and gasoline. As a result, it has been observed that NO emissions can meet the limits without a loss of efficiency for this engine operated with CNG under the ultra-lean mixture.


2019 ◽  
Vol 23 (9) ◽  
pp. 60-65 ◽  
Author(s):  
V.A. Likhanov ◽  
O.P. Lopatin

The results of studies of the integral toxicity of exhaust gases of a diesel engine operating on natural gas and alcohol emulsions are presented. At the same time, the regimes characterizing the specific toxicity of a diesel engine under its operating conditions were determined, and emissions of toxic components on these regimes were determined taking into account their weight coefficients. The results of research specific toxic diesel exhaust toxicity indicators, in accordance with the requirements of UNECE Regulation No. 49, show that when a diesel engine operates on natural gas with exhaust gas recirculation and an ethanol-fuel emulsion, the content of nitrogen oxides (NOx) and carbon dioxide (CO) in the exhaust gases conforms to "EURO 3", particulate matter – "EURO 5", total hydrocarbons (CHx) – "EURO 2". When the diesel engine is running on a methanol-fuel emulsion, the content of NOx, СНx and CO in the exhaust gases complies with the standards "EURO 3", particulate matter – "EURO 5".


2021 ◽  
pp. 146808742199652
Author(s):  
Chris A Van Roekel ◽  
David T Montgomery ◽  
Jaswinder Singh ◽  
Daniel B Olsen

Stoichiometric industrial natural gas engines rely on robust design to achieve consumer driven up-time requirements. Key to this design are exhaust components that are able to withstand high combustion temperatures found in this type of natural gas engine. The issue of exhaust component durability can be addressed by making improvements to materials and coatings or decreasing combustion temperatures. Among natural gas engine technologies shown to reduce combustion temperature, dedicated exhaust gas recirculation (EGR) has limited published research. However, due to the high nominal EGR rate it may be a technology useful for decreasing combustion temperature. In previous work by the author, dedicated EGR was implemented on a Caterpillar G3304 stoichiometric natural gas engine. Examination of combustion statistics showed that, in comparison to a conventional stoichiometric natural gas engine, operating with dedicated EGR requires adjustments to the combustion recipe to achieve acceptable engine operation. This work focuses on modifications to the combustion recipe necessary to improve combustion statistics such as coefficient of variance of indicated mean effective pressure (COV of IMEP), cylinder-cylinder indicated mean effective pressure (IMEP), location of 50% mass fraction burned, and 10%–90% mass fraction burn duration. Several engine operating variables were identified to affect these combustion statistics. A response surface method (RSM) optimization was chosen to find engine operating conditions that would result in improved combustion statistics. A third order factorial RSM optimization was sufficient for finding optimized operating conditions at 3.4 bar brake mean effective pressure (BMEP). The results showed that in an engine with a low turbulence combustion chamber, such as a G3304, optimized combustion statistics resulted from a dedicated cylinder lambda of 0.936, spark timing of 45° before top dead center (°bTDC), spark duration of 365 µs, and intake manifold temperature of 62°C. These operating conditions reduced dedicated cylinder COV of IMEP by 10% (absolute) and the difference between average stoichiometric cylinder and dedicated cylinder IMEP to 0.19 bar.


2014 ◽  
Vol 18 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Jafar Ghafouri ◽  
Sina Shafee ◽  
Amin Maghbouli

Combustion in a large-bore natural gas fuelled diesel engine operating under Homogeneous Charge Compression Ignition mode at various operating conditions is investigated in the present paper. Computational Fluid Dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al. (2000), conducted on the single cylinder Volvo TD100 engine operating at Homogeneous Charge Compression Ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input.


Author(s):  
Enrico Corti

On-vehicle (rolls dynamometer or road) tests are usually more expensive and time-consuming than test bench ones. Furthermore, sometimes results would be useful during vehicles design phase. The paper aim is to present a methodology that allows simulating the vehicle on an engine test cell, by properly controlling the bench actuators. Engine operating conditions mainly depend on speed and load, which are determined by the vehicle driving conditions: the speed-time trend assigned for the vehicle must be converted into equivalent speed-time and load-time trends for the engine, and used for feedback control of brake and accelerator actuators. To evaluate the engine load torque it is necessary to know vehicle characteristics (mass, gear ratios, wheels radius, drag coefficient, frontal area, etc.) and driving conditions: the real vehicle can thus be substituted with a virtual vehicle. The methodology has been applied to simulate an ECE-EUDC driving cycle, which is usually carried out on the rolls dynamometer, as imposed by regulations. During such test the vehicle has to follow an assigned speed-time trajectory, while road load and vehicle inertia are simulated and calibrated using a standard procedure. The test is subject to human error, since the driver does not follow exactly the theoretical speed trend, while using robot-drivers increases the setup cost. The same test has been reproduced on a standard engine bench. This setup would be useful to tune the engine correctly and to study the effects of vehicle characteristics variation, thus allowing to determine the correct strategy for emissions reduction, or to estimate the vehicle emission performance, before it is available for chassis dynamometer tests. The same system could be used for real time implementation of control strategies involving both the vehicle and the engine, such as traction control algorithms. Furthermore driving conditions simulations, executed by electronically controlling engine speed and load trajectories, would be more repeatable than human driving on the chassis dynamometer, and their cost would be substantially smaller. The paper shows how the vehicle speed trend can be converted into engine speed and load trends with a physical system model, and then used to control the bench using a real time control system, thus performing a vehicle driving cycle simulation.


2003 ◽  
Author(s):  
Kevin Walkowicz ◽  
Ken Proc ◽  
Scott Wayne ◽  
Ralph Nine ◽  
Kevin Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document