Advanced Control Techniques for Semi-Active Suspension Systems

Author(s):  
Jessica Gissella Maradey Lazaro ◽  
Kevin Sebastián Cáceres Mojica ◽  
Silvia Juliana Navarro Quintero

Abstract Semiactive suspension system provides comfort and precise support for any type of driving in vehicles. Their main feature consists in the modification of the damping coefficient by applying an external control. Commonly, these suspensions work with non-linear dampers, such as magnetorheological, electrorheological, pneumatic, dry friction, among others; which generate a discontinuous behavior of force, causing an annoying noise known as “chattering”; however, this can be deleted by the correct application of the control technique. So, control strategy selection is a key task in the modeling of dynamic behavior and to describe the variation of characteristics, as well as to achieve the best vehicle’s driving experience in terms of comfort, performance, reliability, stability, and safety. This article shows three advanced control techniques used to design a semi-active vehicle suspension taking the quarter car as the model. From the review of the state of the art, relevant works and authors on the subject are reported. After, the application of the control techniques is shown together with the results obtained, specially, the performance of the system is carried out by means of computer simulations in the Matlab/Simulink virtual environment, accompanied by near-reality disturbances to verify the effectiveness of this study.

2021 ◽  
Author(s):  
Jessica Gissella Maradey Lazaro ◽  
Kevin Sebastian C\xe1ceres Mojica ◽  
Silvia Juliana Navarro Quintero

Author(s):  
Zhengkai Li ◽  
Weichao Sun ◽  
Huijun Gao

The most important function of a vehicle suspension system is keeping the tires on the road surface, imposing requirements on the road-holding performance. As is well known, a semi-active suspension can improve road-holding performance, but little effort has been made to build road-holding-oriented semi-active suspension controllers (RHSAC). This study improved four model reference controllers (MRCs) as RHSAC, including the road-Hook (RH), inverse ground-Hook (IGH), sky-Hook (SH), and ground-Hook (GH). These MRCs have optimal performances in different frequency ranges, and their working principle is analyzed from an energy perspective. To combine the advantages of different MRCs, a mixed control strategy is proposed to enhance the road-holding performance of the MRCs. By mixing SH and RH, the mixed SH–RH performs almost as well as a finely tuned model predictive controller, which outperforms any single MRCs. Based on CarSim-matlab cosimulations, the effectiveness of the mixed RHSAC controller is verified by various real road tests.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1286
Author(s):  
Ayman Aljarbouh ◽  
Muhammad Fayaz

Rigorous model-based design and control for intelligent vehicle suspension systems play an important role in providing better driving characteristics such as passenger comfort and road-holding capability. This paper investigates a new technique for modelling, simulation and control of semi-active suspension systems supporting both ride comfort and road-holding driving characteristics and implements the technique in accordance with the functional mock-up interface standard FMI 2.0. Firstly, we provide a control-oriented hybrid model of a quarter car semi-active suspension system. The resulting quarter car hybrid model is used to develop a sliding mode controller that supports both ride comfort and road-holding capability. Both the hybrid model and controller are then implemented conforming to the functional mock-up interface standard FMI 2.0. The aim of the FMI-based implementation is to serve as a portable test bench for control applications of vehicle suspension systems. It fully supports the exchange of the suspension system components as functional mock-up units (FMUs) among different modelling and simulation platforms, which allows re-usability and facilitates the interoperation and integration of the suspension system components with embedded software components. The concepts are validated with simulation results throughout the paper.


2014 ◽  
Vol 902 ◽  
pp. 231-238 ◽  
Author(s):  
Santiago M. Rivas López ◽  
Mario R. Sobczyk S. ◽  
Fabiano D. Wildner ◽  
Eduardo A. Perondi

This paper addresses a comparative study concerning five control techniques applied to high-performance elevators active suspension systems, such as those employed in "skyscrapers". The main objective is to present the different control techniques and analyze the fundamental characteristics of each controller. To accomplish this, the development of the mathematical model of the controlled system is outlined and its integration with the control algorithms is presented. Besides three classic controllers (State Feedback, PID and Sky Hook), due to the significant dynamic behavior dependence on the mass of the passengers in the total mass transported, two adaptive control algorithms are used to compensate the effects of the mass oscillations of the system as the number of passengers varies along the operation cycle. Simulation results are employed to illustrate the behavior of the system when controlled by means of the presented algorithms.


Author(s):  
Stijn De Bruyne ◽  
Jan Anthonis ◽  
Marco Gubitosa ◽  
Herman Van der Auweraer ◽  
Wim Desmet ◽  
...  

Active suspension systems aim at increasing safety by improving vehicle ride and handling performance while ensuring superior passenger comfort. This paper addresses the influence of the actuator management on the comfort performance of a complete hydraulic active suspension system. An innovative approach, based on nonlinear Model Predictive Control, is proposed and compared to a classical approach that employs a steady-state performance map of the actuator. A simulation analysis shows how taking into account actuator dynamics improves the actuator’s force tracking performance, leading to an improvement of the overall vehicle comfort performance.


2020 ◽  
Vol 4 (2) ◽  
pp. 109-114
Author(s):  
Iyasu T. Jiregna ◽  
Goftila Sirata

The driving comfort of the vehicle is primarily determined by the design of the suspension system, which transmits the force between the vehicle and the ground. There are different types of vehicle suspension systems, including active suspension systems that provide significant benefits for ride comfort while driving. However, the existing active suspension systems have limited functions such as power, and also complex structure. To overcome the problem, the proper design of the active suspension system by considering its present limitations is essential. A well-designed active suspension system controls the load on the wheels under the resonance of the body structure and ensures driving comfort. It reduces the vibrational energy of the vehicle body caused by the excitation of the road while keeping the stability of the vehicle within an acceptable limit. For a proper design of the active suspension system, the road surface, the seat suspension, and the wheel load are the most important elements to consider. In this study, different types of vehicle suspension systems with their limitations have been thoroughly investigated. Many aspects of control and some of the essential practical considerations are also explored.


2000 ◽  
Vol 123 (4) ◽  
pp. 727-733 ◽  
Author(s):  
Gregory D. Buckner ◽  
Karl T. Schuetze ◽  
Joe H. Beno

Effective control of ride quality and handling performance are challenges for active vehicle suspension systems, particularly for off-road applications. Off-road vehicles experience large suspension displacements, where the nonlinear kinematics and damping characteristics of suspension elements are significant. These nonlinearities tend to degrade the performance of active suspension systems, introducing harshness to the ride quality and reducing off-road mobility. Typical control strategies rely on linear, time-invariant models of the suspension dynamics. While these models are convenient, nominally accurate, and tractable due to the abundance of linear control techniques, they neglect the nonlinearities and time-varying dynamics present in real suspension systems. One approach to improving the effectiveness of active vehicle suspension systems, while preserving the benefits of linear control techniques, is to identify and cancel these nonlinearities using Feedback Linearization. In this paper the authors demonstrate an intelligent parameter estimation approach using structured artificial neural networks that continually “learns” the nonlinear parameter variations of a quarter-car suspension model. This estimation algorithm becomes the foundation for an Intelligent Feedback Linearization (IFL) controller for active vehicle suspensions. Results are presented for computer simulations, real-time experimental tests, and field evaluations using an off-road vehicle (a military HMMWV). Experimental results for a quarter-car test rig demonstrate 60% improvements in ride quality relative to baseline (non-adapting) control algorithms. Field trial results reveal 95% reductions in absorbed power and 65% reductions in peak sprung mass acceleration using this IFL approach versus conventional passive suspensions.


Author(s):  
Salah A. Elmoselhy ◽  
Badr S. Azzam ◽  
Sayed M. Metwalli

Laminated fibrous micro-composite E-spring is an optimized trend of springs for vehicle suspension systems. The mechanical and frequency-response-based properties of these springs are investigated experimentally at both of the structural and constitutional levels. Thermoplastic-based and thermoset-based fibrous composite structures of the E-springs are modified at micro-scale with various additives and consequently they are compared. The experimental results reveal that additives of micrometer-sized particles of E-glass fibers as well as mineral clay to an ISO-phthalic polyester resin of the micro-composite E-spring can demonstrate superior characteristics that can surpass those of the traditional steel springs. Accordingly, micro-composite E-springs can displace both of the hydraulic dampers and steel springs in both of the passive and semi-active suspension systems in a reliable, simple, and cost-effective way.


Sign in / Sign up

Export Citation Format

Share Document