A Quantum Mechanical Study of the Thermal Conduction Across a ZrB2-SiC Interface as a Function of Temperature and Strain

Author(s):  
Vikas Samvedi ◽  
Vikas Tomar

Atomistic analyses of thermal conduction across ZrB2/SiC based nanocomposite interface are performed using first principles density functional theory (DFT) with plane-wave basis sets. The changes in the thermal properties of nanocomposites have been analyzed under the effect of straining and temperature and compared for their phononic and electronic dependence.

2014 ◽  
Vol 16 (39) ◽  
pp. 21002-21015 ◽  
Author(s):  
M. Patel ◽  
F. F. Sanches ◽  
G. Mallia ◽  
N. M. Harrison

Periodic hybrid-exchange DFT is used to explore the structure and properties of SnO2(110) and TiO2(110) surfaces in contact with water.


Author(s):  
Jitendra Kumar P. Deshmukh ◽  
Ankur Trivedi ◽  
Deep Kumar ◽  
Devesh Kumar

Density Functional theory (DFT) is used to study the effect of substituents on the electronic and optical property of organic light emitting material 1,3,5-tris(4’-(1’’- phenyl-benzimidazol-2’’- yl)phenyl) amine (TPBB) and its derivatives (MeO-TPBB, Br-TPBB and Bu-TPBB ). TD – DFT has been used to study the absorption spectra of these molecules. This study suggests that each derivative of TPBB shows a UV – VIS spectra at slightly different frequency.


RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 27060-27067 ◽  
Author(s):  
Xiu-Qing Zhang ◽  
Zhao-Yi Zeng ◽  
Yan Cheng ◽  
Guang-Fu Ji

The phonon vibrational spectra and thermal properties of the platinum-based superconductor SrPt3P are investigated by the generalized gradient approximation (GGA) in the framework of density functional theory (DFT).


2004 ◽  
Vol 2 (3) ◽  
pp. 456-479 ◽  
Author(s):  
Ajit Virdi ◽  
V. Gupta ◽  
Archna Sharma

AbstractA systematic quantum mechanical study of the possible conformations, their relative stabilities, vibrational and electronic spectra and thermodynamic parameters of methyl-3-methoxy-2-propenoate has been reported for the electronic ground (S0) and first excited (S1) states using time-dependent and time-independent Density Functional Theory (DFT) and RHF methods in extended basis sets. Detailed studies have been restricted to the E-isomer, which is found to be substantially more stable than the Z-isomer. Four possible conformers c′Cc, c′Tc, t′Cc, t′Tc, of which the first two are most stable, have been identified in the S0 and S1 states. Electronic excitation to S1 state is accompanied with a reversal in the relative stability of the c′Cc and c′Tc conformers and a substantial reduction in the rotational barrier between them, as compared with the S0 state. Optimized geometries of these conformers in the S0 and S1 states are being reported. Based on suitably scaled RHF/6-31G** and DFT/6-311G** calculations, assignments have been provided to the fundamental vibrational bands of both these conformers in terms of frequency, form and intensity of vibrations and potential energy distribution across the symmetry coordinates in the S0 state. A complete interpretation of the electronic spectra of the conformers has been provided.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

In the previous chapters we described the basic principles of density functional theory, gave examples of how accurate it is to describe static magnetic properties in general, and derived from this basis the master equation for atomistic spin-dynamics; the SLL (or SLLG) equation. However, one term was not described in these chapters, namely the damping parameter. This parameter is a crucial one in the SLL (or SLLG) equation, since it allows for energy and angular momentum to dissipate from the simulation cell. The damping parameter can be evaluated from density functional theory, and the Kohn-Sham equation, and it is possible to determine its value experimentally. This chapter covers in detail the theoretical aspects of how to calculate theoretically the damping parameter. Chapter 8 is focused, among other things, on the experimental detection of the damping, using ferromagnetic resonance.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


Author(s):  
Wei-Feng Xie ◽  
Hao-Ran Zhu ◽  
Shi-Hao Wei

The structural evolutions and electronic properties of Au$_l$Pt$_m$ ($l$+$m$$\leqslant$10) clusters are investigated by using the first$-$principles methods based on density functional theory (DFT). We use Inverse design of materials by...


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


Sign in / Sign up

Export Citation Format

Share Document