Four-Wire Bridge Measurements of van der Pauw Stress Sensors on (100) and (111) Silicon

Author(s):  
Richard C. Jaeger ◽  
Mohammad Motalab ◽  
Safina Hussain ◽  
Jeffrey C. Suhling

Four-wire resistance characterization of van der Pauw stress sensors is discussed. Under the proper orientations and excitations, the output of the four-contact sensors can be shown to depend upon only the in-plane shear stress or the in-plane normal stress difference on (100) silicon. The other stress terms are cancelled out by the symmetry of the structure, and the measurements are inherently temperature compensated. In bridge-mode, each sensor requires only one measurement and produces an output voltage that is directly proportional to the shear stress or in-plane normal stress difference, and the sensitivity is 3.16 times that of the equivalent resistor sensors, just as in the normal van der Pauw mode. Experimental, theoretical, finite-difference and finite-element and simulation results are presented demonstrating the behavior of the sensor. The two sensors can be merged into one eight-contact device, or n- and p-tye sensors can be overlaid in standard IC processes. Similar results apply to sensors on (111) silicon.

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Richard C. Jaeger ◽  
Mohammad Motalab ◽  
Safina Hussain ◽  
Jeffrey C. Suhling

Under the proper orientations and excitations, the transverse output of rotationally symmetric four-contact van der Pauw (VDP) stress sensors depends upon only the in-plane shear stress or the difference of the in-plane normal stresses on (100) silicon. In bridge-mode, each sensor requires only one four-wire measurement and produces an output voltage with a sensitivity that is 3.16 times that of the equivalent resistor rosettes or bridges, just as in the normal VDP sensor mode that requires two separate measurements. Both numerical and experimental results are presented to validate the conjectured behavior of the sensor. Similar results apply to sensors on (111) silicon. The output voltage results provide a simple mathematical expression for the offset voltage in Hall effect devices or the response of pseudo Hall-effect sensors. Bridge operation facilitates use of the VDP structure in embedded stress sensors in integrated circuits.


2011 ◽  
Vol 686 ◽  
pp. 26-39 ◽  
Author(s):  
Étienne Couturier ◽  
François Boyer ◽  
Olivier Pouliquen ◽  
Élisabeth Guazzelli

AbstractWe measure the second normal-stress difference in suspensions of non-Brownian neutrally buoyant rigid spheres dispersed in a Newtonian fluid. We use a method inspired by Wineman & Pipkin (Acta Mechanica, vol. 2, 1966, pp. 104–115) and Tanner (Trans. Soc. Rheol., vol. 14, 1970, pp. 483–507), which relies on the examination of the shape of the suspension free surface in a tilted trough flow. The second normal-stress difference is found to be negative and linear in shear stress. The ratio of the second normal-stress difference to shear stress increases with increasing volume fraction. A clear behavioural change exhibiting a strong (approximately linear) growth in the magnitude of this ratio with volume fraction is seen above a volume fraction of 0.22. By comparing our results with previous data obtained for the same batch of spheres by Boyer, Pouliquen & Guazzeli (J. Fluid Mech., 2011, doi:10.1017/jfm.2011.272), the ratio of the first normal-stress difference to the shear stress is estimated and its magnitude is found to be very small.


2021 ◽  
Vol 881 ◽  
pp. 39-44
Author(s):  
Zhong Ren

In this paper, the effect of traction speed on the four-lumen plastic micro-catheter (FLPMC) was numerically studied. Moreover, the numerical simulations of FLPMC based on two kinds of extrusions, i.e., traditional extrusion and gas-assisted extrusion were performed and compared. Numerical results show that with the increase of traction speed, the sizes of FLPMC for both extrusions all decrease. The sizes of FLPMC based on gas-assisted extrusion are sightly larger than those of the traditional extrusion. To ascertain the reasons, the flow velocities, pressure, shear stress and first normal stress difference distributions of melt based on both extrusions under two different traction speeds were obtained and compared. Results show that with the increase of traction speed under the fixed volume inlet flow rate, the radial flow velocities of melt at the outlet of die decrease but the axial flow velocities increase, which results in the decrease of the die swell at the outlet of die and the size shrinkage of exit face for the FLPMC based on both extrusions. However, for the gas-assisted extrusion, the axial velocities are larger, and the pressure, shear stress and first normal stress difference are far less than those of traditional extrusion, which results in the larger unit volume flow rate, then the sizes of cross-section face are larger than those of the traditional extrusion.


Sign in / Sign up

Export Citation Format

Share Document