Geometric Dent Characterization

Author(s):  
A. Dinovitzer ◽  
R. Lazor ◽  
L. B. Carroll ◽  
J. Zhou ◽  
F. McCarver ◽  
...  

The Canadian pipeline design standard (CSA Z662) requires the repair of smooth dents with depths exceeding 6% of the pipeline’s outside diameter. This limit on dent depth is reduced in the presence of additional localized effects such as pipe wall gouges, corrosion, planar flaws or weld seams. It has been noted, however, that pipelines have operated satisfactorily with dents in excess of 10% while others with 3% dents have failed. Based upon observation of this type the question arises, “Is there more to characterizing a dent than its depth?” An ongoing group sponsored project at BMT Fleet Technology Limited (FTL) is exploring the issue of dent characterization using a dent assessment model developed at FTL. The objective of this project is to develop a rapid dent life expectancy characterization technique based upon dent geometry, line pressure history and line pipe material properties. This paper will outline the general characterization approach being considered and demonstrate some of the observed and expected relationships between service life and dent geometry. The relative importance of each dent characteristic (geometric measures, line pipe material and line pressure history) will be discussed to demonstrate the potential of the rapid characterization approach being developed.

Author(s):  
A. Dinovitzer ◽  
A. Bhatia ◽  
R. Walker ◽  
R. Lazor

The Canadian Pipeline Design Standard (CSA Z662) [1] requires the repair of smooth dents with depths exceeding 6% of the pipeline’s outside diameter. This limit on dent depth is reduced in the presence of additional localised effects such as pipe wall gouges, corrosion or planar flaws. Furthermore, it has been observed that pipe wall metal loss, planar flaws and weld seam interaction with dents can significantly reduce the service life of a dented pipe segment. A previously developed pipeline dent assessment model, based on the actual dent profile and in-service pressure history applied to non-linear pipe finite element model with a fracture mechanics crack growth algorithm, has been used to explore the consequences of these localised effects. The effects of corrosion (uniform or local pitting), weld seams (including their weld toe stress concentration effects and residual stress fields), planar flaws (cracks) and gouges on the service life of a dent are reviewed in this investigation. The performance of the model is demonstrated based on its agreement with field observations. The dent assessment model application and validation processes has indicated that the model presented here can be reliably used to predict the service life of dented pipelines in the presence of various localised effects.


Author(s):  
Diana Toma ◽  
Silke Harksen ◽  
Dorothee Niklasch ◽  
Denise Mahn ◽  
Ashraf Koka

The general trend in oil and gas industry gives a clear direction towards the need for high strength grades up to X100. The exploration in extreme regions and under severe conditions, e.g. in ultra deep water regions also considering High Temperature/High Pressure Fields or arctic areas, becomes more and more important with respect to the still growing demand of the world for natural resources. Further, the application of high strength materials enables the possibility of structure weight reduction which benefits to materials and cost reduction and increase of efficiency in the pipe line installation process. To address these topics, the development of such high strength steel grades with optimum combination of high tensile properties, excellent toughness properties and sour service resistivity for seamless quenched and tempered pipes are in the focus of the materials development and improvement of Vallourec. This paper will present the efforts put into the materials development for line pipe applications up to grade X100 for seamless pipes manufactured by Pilger Mill. The steel concept developed by Vallourec over the last years [1,2] was modified and adapted according to the technical requirements of the Pilger rolling process. Pipes with OD≥20″ and wall thickness up to 30 mm were rolled and subsequent quenched and tempered. The supportive application of thermodynamic and kinetic simulation techniques as additional tool for the material development was used. Results of mechanical characterization by tensile and toughness testing, as well as microstructure examination by light-optical microscopy will be shown. Advanced investigation techniques as scanning electron microcopy and electron backscatter diffraction are applied to characterize the pipe material up to the crystallographic level. The presented results will demonstrate not only the effect of a well-balanced alloying concept appointing micro-alloying, but also the high sophisticated and precise thermal treatment of these pipe products. The presented alloying concept enables the production grade X90 to X100 with wall thickness up to 30 mm and is further extending the product portfolio of Vallourec for riser systems for deepwater and ultra-deep water application [1, 3, 4].


Author(s):  
Karl Christoph Meiwes ◽  
Susanne Höhler ◽  
Marion Erdelen-Peppler ◽  
Holger Brauer

During reel-laying repeated plastic strains are introduced into a pipeline which may affect strength properties and deformation capacity of the line pipe material. Conventionally the effect on the material is simulated by small-scale reeling simulation tests. For these, coupons are extracted from pipes that are loaded in tension and compression and thermally aged, if required. Afterwards, specimens for mechanical testing are machined from these coupons and tested according to the corresponding standards. Today customers often demand additional full-scale reeling simulation tests to assure that the structural pipe behavior meets the strain demands as well. Realistic deformations have to be introduced into a full-size pipe, followed by aging, sampling and mechanical testing comparable to small-scale reeling. In this report the fitness for use of a four-point-bending test rig for full-scale reeling simulation tests is demonstrated. Two high-frequency-induction (HFI) welded pipes of grade X65M (OD = 323.9 mm, WT = 15.9 mm) from Salzgitter Mannesmann Line Pipe GmbH (MLP) are bent with alternate loading. To investigate the influences of thermal aging from polymer-coating process one test pipe had been heat treated beforehand, in the same manner as if being PE-coated. After the tests mechanical test samples were machined out of the plastically strained pipes. A comparison of results from mechanical testing of material exposed to small- and full-scale reeling simulation is given. The results allow an evaluation of the pipe behavior as regards reeling ability and plastic deformation capacity.


Author(s):  
B. D. Newbury ◽  
D. P. Fairchild ◽  
C. A. Prescott ◽  
T. D. Anderson ◽  
A. J. Wasson

Abstract C-Mn steels are extensively used as line pipe material for sour service oil and gas applications, i.e. in the presence of hydrogen sulfide (H2S), because of their ease of fabrication, weldability and significantly lower cost compared to Corrosion Resistant Alloys (CRAs). However, use of C-Mn steel in sour conditions can be limited by its susceptibility to various hydrogen damage mechanisms such as sulfide stress cracking (SSC) and hydrogen induced cracking (HIC). Presently, there are several industry standards which provide guidelines for materials selection and qualification testing to ensure the integrity of carbon steel pipelines in sour service. In recent years, examples of line pipe susceptibility to SSC have occurred due to undetected Local Hard Zones (LHZs) produced during steel plate manufacture. A companion paper (Fairchild, et al, [1]) describes historical and one newly recognized root causes for LHZs. Due to this newly recognized root cause, the adequacy of the current industry practice for specifying and qualifying C-Mn line pipe for severe sour service should be evaluated. In this work, a new approach to monitoring steel plate manufacture during Thermo Mechanical Controlled Processing (TMCP) in order to manage LHZs is explained. Results from implementing this qualification approach will be discussed. In addition, several gaps were identified in the current test methods and various potential modifications to address these gaps were identified. Based on the results of these studies, recommendations to the test methods are made to improve the robustness in the materials qualification process used for sour pipeline projects.


Author(s):  
D. Rudland ◽  
D.-J. Shim ◽  
G. M. Wilkowski ◽  
S. Kawaguchi ◽  
N. Hagiwara ◽  
...  

The ductile fracture resistance of newer line pipe steels is of concern for high grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Method (TCM). This analysis incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this analysis, the influence of the backfill is lumped into one empirically developed “soil” coefficient which is not specific to soil type, density or strength. No attempt has been made to quantify the effects of soil depth, type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. In this paper, results from small-scale and large-scale burst tests with well-controlled backfill conditions are presented and analyzed to determine the effects of soil depth and cohesiveness on the fracture speeds. Combining this data with the past full-scale burst data used in generating the original backfill coefficient provides additional insight into the effects of the soil properties on the fracture speeds and the arrest of running ductile fractures in line pipe materials.


Author(s):  
K. A. Widenmaier ◽  
A. B. Rothwell

The use of high strength, high design-factor pipe to transport natural gas requires the careful design and selection of pipeline materials. A primary material concern is the characterization and control of ductile fracture initiation and arrest. Impact toughness in the form of Charpy V-notch energies or drop-weight tear tests is usually specified in the design and purchase of line pipe in order to prevent large-scale fracture. While minimum values are prescribed in various codes, they may not offer sufficient protection in pipelines with high pressure, cold temperature, rich gas designs. The implications of the crack driving force arising from the gas decompression versus the resisting force of the pipe material and backfill are examined. The use and limitations of the Battelle two-curve method as the standard model are compared with new developments utilizing crack-tip opening angle and other techniques. The methodology and reasoning used to specify the material properties for line pipe are described and the inherent limits and risks are discussed. The applicability of Charpy energy to predict ductile arrest in high strength pipes (X80 and above) is examined.


Author(s):  
G. Wilkowski ◽  
D-J. Shim ◽  
Y. Hioe ◽  
S. Kalyanam ◽  
M. Uddin

Current line-pipe steels have significantly higher Charpy upper-shelf energy than older steels. Many newer line-pipe steels have Charpy upper-shelf energy in the 300 to 500J range, while older line-pipe steels (pre-1970) had values between 30 and 60J. With this increased Charpy energy comes two different and important aspects of how to predict the brittle fracture arrestability for these new line-pipe steels. The first aspect of concern is that the very high Charpy energy in modern line-pipe steels frequently produces invalid results in the standard pressed-notch DWTT specimen. Various modified DWTT specimens have been used in an attempt to address the deficiencies seen in the PN-DWTT procedure. In examining fracture surfaces of various modified DWTT samples, it has been found that using the steady-state fracture regions with similitude to pipe burst test (regions with constant shear lips) rather than the entire API fracture area, results collapse to one shear area versus temperature curve for all the various DWTT specimens tested. Results for several different materials will be shown. The difficulty with this fracture surface evaluation is that frequently the standard pressed-notch DWTT only gives valid transitional fracture data up to about 20-percent shear area, and then suddenly goes to 100-percent shear area. The second aspect is that with the much higher Charpy energy, the pipe does not need as much shear area to arrest a brittle fracture. Some analyses of past pipe burst tests have been recently shown and some additional cases will be presented. This new brittle fracture arrest criterion means that one does not necessarily have to specify 85-percent shear area in the DWTT all the time, but the shear area needed for brittle fracture arrest depends on the pipeline design conditions (diameter, hoop stress) and the Charpy upper-shelf energy of the steel. Sensitivity studies and examples will be shown.


Author(s):  
Ibrahim Konuk ◽  
Abdelfdettah Fredj

This paper presents results from two different Finite Element (FE) pipeline ice-scour models employing pipe and shell elements that incorporate large deformations and metal plasticity. The main objective of this paper is to investigate the effects and implications of some of the main pipeline design parameters on the response of the pipeline determined by using Winkler models and soil displacements that are based on an empirical scour function commonly used in recent literature. The current model is two dimensional in terms of deformed pipe geometry and incorporates temperature and pressure stiffness effects. A detailed study of the soil displacements underneath and around the scour and a three-dimensional continuum based ice-soil-pipe interaction model is being presented in a different paper. The paper discusses the limitations and implications of the Winkler modeling and compares results obtained using different Winkler spring models. It illustrates the effects of pipe temperature (and pressure), pipe burial depth, and scour width. A comparison of pipe response using shell and pipe elements is also presented. This paper presents results from the FE models for a typical gathering pipeline. The pipe is taken to be a 16 inch diameter and 0.75 inch wall thickness API 5L X65 Specification line pipe.


Author(s):  
Jackie McCoy ◽  
Scott Ironside

Enbridge Pipelines Inc. owns and operates the world’s longest hydrocarbon transmission system, which traverses across the varying geophysical landforms of Canada and the United States. These pipelines range in diameter from 12” to 48” and were constructed between 1950 and 2003. The wide range of pipe sizes, practices used for construction, and landforms traversed result in a very challenging Dent Management Program. Standards such as CSA Z662-99, ASME B31.4, and B31.8 provide a criterion for the selection of dents that require repair. Experience has shown that these standards do not identify all dents that have a possibility of failure due to leak or rupture. Enbridge initiated a project to study dents with BMT Fleet Technology of Kanata Ontario, this study determined that the dent geometry in addition to the depth to pipe diameter ratio affects the propensity that a dent will fail. Recent research and development by a group sponsored project lead by BMT Fleet technology on dent characterization has combined the pipeline’s cyclic pressure history with the shape of the dent to predict a time to failure. Enbridge combines these tools along with new insights from field excavations into its Dent Management Program. The Dent Management Program includes a series of prioritization’s to determine which sections of pipelines require detailed dent analysis. Typical prioritization criteria are rocky terrain, larger occurrence of third party damage, and history of numerous dents or failures. The detailed analysis utilizes the BMT Fleet “Dent Characterization Criteria” which was developed using their Finite Element Dent Assessment Model. This model considers the geometry of the dent, pipe material properties and historical pressure data to predict a time to failure for each dent. This time to failure prediction requires some additional engineering analysis depending on how close the parameters of the actual pipe are to what was validated with the model. This engineering analysis will determine which dents are selected for excavation and examination. This model has provided Enbridge with a tool to better manage its dent program, and this will be proposed as an option to improve the existing standards.


Author(s):  
K. Biermann ◽  
C. Kaucke ◽  
M. Probst-Hein ◽  
B. Koschlig

Offshore oil and gas production worldwide is conducted in increasingly deep waters, leading to more and more stringent demands on line pipes. Higher grades and heavier wall thicknesses in combination with deep temperature toughness properties, good weldability and suitability for sour service applications are among the characteristics called for. It is necessary that pipe manufacturers develop materials to meet these at times conflicting requirements. An alloying concept based on steel with very low carbon content is presented. This type of material provides excellent toughness properties at deep temperatures in line pipe with a wall thickness of up to 70 mm, produced by hot rolling followed by QT heat treatment. Pipes from industrial production of identical chemical composition and heat treatment achieved grades X65 to X80, depending on wall thickness. The properties of the steel used in pipes are presented. The resistance of the pipe material to the influence of sour gas was assessed by standard tests. To demonstrate weldability, test welds were performed and examined.


Sign in / Sign up

Export Citation Format

Share Document