Deterministic Assessment of Minor Mechanical Damage on Pipelines

Author(s):  
M. J. Rosenfeld ◽  
Alan Beckett ◽  
Bhaskar Neogi ◽  
U. J. Baskurt ◽  
Elden Johnson

In-line inspection (ILI) of the Trans Alaska Pipeline System (TAPS) using high resolution metal loss and caliper tools indicated 77 locations with suspected minor mechanical damage features (MDFs). The tools used are able to detect the presence of a suspected feature, and measure indented dimensions, but are insufficient to detect the presence of cracks or gouges needed to reliably assess feature severity based solely on the ILI data. Excavations of 42 sites deemed most severe provided important field data characterizing residual deformation dimensions, revealed the occurrence of generally surficial gouges or cracks, and allowed a reliable field assessment of defect severity. Upon completion of the excavations, 35 possible MDF locations remained unexcavated. An engineering evaluation was undertaken to assess whether or not the remaining MDFs pose a threat that is significant enough to warrant excavation. Multiple assessment methods were utilized including deterministic, probabilistic, and risk assessment methods. A deterministic mechanics model was developed to estimate the safe operating life of the pipeline at each of the remaining uninvestigated locations considering the characteristics of previously observed damage, the perceived severity of uninvestigated damage, material properties of the pipe, and the fatigue environment resulting from expected modes of pipeline operation. The results strongly suggested that 33 of 35 damage features were extremely minor, with remaining life well in excess of the remaining project life cycle. None of these features were judged to threaten the immediate integrity of the line, and are unlikely to do so in the foreseeable operating life of the facility. The results also were found to support the outcome of the operator’s risk-based evaluation process.

Author(s):  
Patrick H. Vieth ◽  
Clifford J. Maier ◽  
William V. Harper ◽  
Elden Johnson ◽  
Bhaskar Neogi ◽  
...  

In-line inspection (ILI) of the Trans Alaska Pipeline System (TAPS) using high resolution metal loss tools indicated 77 locations with suspected minor mechanical damage features (MDF). The tools used are able to detect the presence of a suspected feature, and measure indented dimensions, but are insufficient to detect the presence of cracks or gouges needed to reliably assess feature severity based solely on the ILI data. Excavations of 42 sites deemed most severe provided important field data characterizing residual deformation dimensions, the occurrence of gouges or cracks, and allowing a reliable field assessment of defect severity. Upon completion of the excavations, 35 possible MDF locations remained unexcavated. An engineering evaluation was undertaken to assess whether or not these remaining minor MDF pose a threat that is significant enough to warrant excavation. Multiple assessment methods were utilized including deterministic, probabilistic, and risk assessment methods. The probabilistic assessment of 35 unexcavated MDFs was performed using PCFStat; or Pressure Cycle Fatigue Statistical Assessment, which uses Monte Carlo simulation to estimate remaining fatigue life. PCFStat performs 1,000’s of simulations for each case where the input parameters are randomly selected from expected distributions. Of particular importance is the fatigue environment of the location. The results of the probabilistic assessment were used to estimate the potential for failure of remaining MDFs. The results suggest that 25 of 35 unexpected damage features had a POF of less than 10−4 over the remaining expected pipeline life cycle and thus are unlikely to fail. Alyeska considered a combination of probabilistic, deterministic and risk assessment results to decide on the actual locations to be examined. The results of probabilistic analysis also were found to support the outcome of the operator’s risk-based evaluation process.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. K. F. M. Ali ◽  
N. Md. Noor ◽  
N. Yahaya ◽  
A. A. Bakar ◽  
M. Ismail

Pipelines play an extremely important role in the transportation of gases and liquids over long distance throughout the world. Internal corrosion due to microbiologically influenced corrosion (MIC) is one of the major integrity problems in oil and gas industry and is responsible for most of the internal corrosion in transportation pipelines. The presence of microorganisms such as sulfate reducing bacteria (SRB) in pipeline system has raised deep concern within the oil and gas industry. Biocide treatment and cathodic protection are commonly used to control MIC. However, the solution is too expensive and may create environmental problems by being too corrosive. Recently, Ultraviolet (UV) as one of the benign techniques to enhance mitigation of MIC risk in pipeline system has gained interest among researchers. An amount of 100 ml of modified Baar’s medium and 5 ml of Desulfovibrio vulgaris (strain 7577) seeds was grown in 125 ml anaerobic vials with carbon steel grade API 5L-X70 coupons at the optimum temperature of 37°C and pH 9.5 for fifteen days. This was then followed by exposing the medium to UV for one hour. Results from present study showed that UV radiation has the ability to disinfect bacteria, hence minimizing the risk of metal loss due to corrosion in steel pipeline. 


Author(s):  
W. Hanif ◽  
S. Kenny

Pipelines may experience damage (e.g. dent, gouge) during handling, installation and normal operations due to external interference. Pipelines in offshore environment may be prone to mechanical damage from events such as ice gouging, frost heave, and seismic fault movement. Damage mechanisms can be associated with deformation or metallurgical/metal loss that may include pipe dent, pipe ovality, ice gouging, pipe buckling, corrosion etc. The type and severity of pipe damage may influence operational, repair and intervention strategies. For conventional pipelines, the assessment of mechanical damage plays an important role in the development of integrity management programs that may be of greater significance for pipeline systems located in remote harsh environments due to remote location and logistical constraints. This study examines the effects of plain dents on pipe mechanical response using continuum finite element methods. ABAQUS/Standard (6.10-1) environment was used to simulate damage events and pipe response. Modelling procedures were developed and calibrated against physical and numerical data sets available in public domain. Once confidence in numerical procedures was achieved, an analysis matrix was established to account for a range of influential parameters including Diameter to wall thickness ratio (D/t), indenter diameter to pipe diameter ratio (ID/OD), hoop stress due to internal pressure to yield strength ratio (σh/σy), and kinematic boundary conditions. The results from this study provide a basis to support a broader initiative for developing an engineering tool for the assessment of damage interaction with pipeline girth welds and development of an engineering performance criterion.


Author(s):  
Rafael G. Mora ◽  
Curtis Parker ◽  
Patrick H. Vieth ◽  
Burke Delanty

With the availability of in-line inspection data, pipeline operators have additional information to develop the technical and economic justification for integrity verification programs (i.e. Fitness-for-Purpose) across an entire pipeline system. The Probability of Exceedance (POE) methodology described herein provides a defensible decision making process for addressing immediate corrosion threats identified through metal loss in-line inspection (ILI) and the use of sub-critical in-line inspection data to develop a long term integrity management program. In addition, this paper describes the process used to develop a Corrosion In-line Inspection POE-based Assessment for one of the systems operated by TransGas Limited (Saskatchewan, Canada). In 2001, TransGas Limited and CC Technologies undertook an integrity verification program of the Loomis to Herbert gas pipeline system to develop an appropriate scope and schedule maintenance activities along this pipeline system. This methodology customizes Probability of Exceedance (POE) results with a deterministic corrosion growth model to determine pipeline specific excavation/repair and re-inspection interval alternatives. Consequently, feature repairs can be scheduled based on severity, operational and financial conditions while maintaining safety as first priority. The merging of deterministic and probabilistic models identified the Loomis to Herbert pipeline system’s worst predicted metal loss depth and the lowest safety factor per each repair/reinspection interval alternative, which when combined with the cost/benefit analysis provided a simplified and safe decision-making process.


Author(s):  
Gurumurthy Kagita ◽  
Gudimella G. S. Achary ◽  
Mahesh B. Addala ◽  
Balaji Srinivasan ◽  
Penchala S. K. Pottem ◽  
...  

Abstract Mechanical damage in subsea pipelines in the form of local dents / buckles due to excessive bending deformation may severely threaten their structural integrity. A dent / buckle has two significant effects on the pipeline integrity. Notably, residual stresses are set up as result of the plastic deformation and stress concentrations are created due to change in pipe geometry caused by the denting / buckling process. To assess the criticality of a dent / buckle, which often can be associated with strain induced flaws in the highly deformed metal, integrity assessment is required. The objective of this paper is to evaluate the severity of dent / buckle in a 48” subsea pipeline and to make the rerate, repair or replacement decision. This paper presents a Level 3 integrity assessment of a subsea pipeline dent / buckle with metal loss, reported in in-line inspection (ILI), in accordance with Fitness-For-Service Standard API 579-1/ASME FFS-1. In this paper, the deformation process that caused the damage (i.e. dent / buckle) with metal loss is numerically simulated using ILI data in order to determine the magnitude of permanent plastic strain developed and to evaluate the protection against potential failure modes. For numerical simulation, elastic-plastic finite element analyses (FEA) are performed considering the material as well as geometric non-linearity using general purpose finite element software ABAQUS/CAE 2017. Based on the numerical simulation results, the integrity assessment of dented / buckled subsea pipeline segment with metal loss has been performed to assess the fitness-for-service at the operating loads.


1973 ◽  
Vol 1973 (1) ◽  
pp. 39-43 ◽  
Author(s):  
E. W. Wellbaum

ABSTRACT Oil spills only occur after the start-up of a facility but oil spill prevention for a pipeline-terminal-tanker complex begins with route selection and continues through design, construction, personnel training, operation and maintenance. The trans-Alaska pipeline project has faced all of the usual, and some unusual, problems which needed solutions to give maximum assurance that oil spills would not occur during the operating life of the facilities. This conference today is considering the prevention of oil spill incidents associated with tanker and pipeline operations, refineries, and transfer and storage terminals. The trans-Alaska pipeline system is concerned with each of these functions of the petroleum industry. Alyeska Pipeline Service Company is responsible for design, construction, operation, and maintenance of the pipeline system which will move crude oil produced on the Alaskan North Slope along a route to Valdez, an ice free port located on an arm of Prince William Sound. At Valdez, the oil will be transferred to ocean going tankers. The project will have at its ultimate design capacity of two million barrels per day:Almost 800 miles of 48-inch pipeline.Twelve pump stations with 650,000 installed HP.Twenty-million barrels of crude oil storage in fifty-two tanks.Five loading berths at a deep water terminal servicing a fleet of tankers ranging in size from 30,000 dwt to 250,000 dwt.Eight crude oil topping plants, manufacturing fuel for pump stations, each with a charge of 10,000 barrels per day.A ballast water treating plant capable of handling up to 800,000 barrels per day of dirty ballast.A 25,000 KW power generation plant.Several dozen mechanical refrigeration plants which will be freezing the ground in Alaska.


Author(s):  
David J. Warman ◽  
Dennis Johnston ◽  
John D. Mackenzie ◽  
Steve Rapp ◽  
Bob Travers

This paper describes an approach used by Duke Energy Gas Transmission (DEGT) to manage dents and mechanical damage as part of its overall Integrity Management Plan (IMP). The approach provides guidance in the process for evaluating deformation anomalies that are detected by high resolution magnetic flux leakage (HR-MFL) and multi-channel geometry in-line inspection tools, the process to determine which deformations will be selected for excavation, the process to conduct pipeline field excavations, assessments, and repairs for pipeline integrity purposes. This approach was developed, tested and fully implemented during pipeline integrity work over a two year program involving over 1,100 miles of HR-MFL and 900 miles of geometry in-line inspection. Integration of data from high resolution ILI tools (HR-MFL and multi-channel deformation tools) was used to identify and characterize dents and mechanical damage in the pipeline system. From subsequent field assessments and correlation with ILI results, the processes were refined and field procedures developed. The new guidance provided in the 2003 edition of ASME B31.8 was used as the governing assessment criteria.


2005 ◽  
Vol 127 (3) ◽  
pp. 274-283 ◽  
Author(s):  
J. Bruce Nestleroth ◽  
Richard J. Davis

This paper describes the design of a new magnetic flux leakage (MFL) inspection tool that performs an inline inspection to detect and characterize both metal loss and mechanical damage defects. An inspection tool that couples mechanical damage assessment as part of a routine corrosion inspection is expected to have considerably better prospects for application in the pipeline industry than a tool that complicates existing procedures. The design is based on study results that show it is feasible to detect and assess mechanical damage by applying a low magnetic field level in addition to the high magnetic field employed by most inspection tools. Nearly all commercially available MFL tools use high magnetic fields to detect and size metal loss such as corrosion. A lower field than is commonly applied for detecting metal loss is appropriate for detecting mechanical damage, such as the metallurgical changes caused by impacts from excavation equipment. The lower field is needed to counter the saturation effect of the high magnetic field, which masks and diminishes important components of the signal associated with mechanical damage. Finite element modeling was used in the design effort and the results have shown that a single magnetizer with three poles is the most effective design. Furthermore, it was found that for the three-pole system the high magnetization pole must be in the center, which was an unexpected result. The three-pole design has mechanical advantages, including a magnetic null in the backing bar, which enables installation of a pivot point for articulation of the tool through bends and restrictions. This design was prototyped and tested at Battelle’s Pipeline Simulation Facility (West Jefferson, OH). The signals were nearly identical to results acquired with a single magnetizer reconfigured between tests to attain the appropriate high and low field levels.


Author(s):  
Wenxing W. Zhou ◽  
Ji Bao

The present study quantifies probabilistic characteristics of the wall thickness of welded pipe joints in onshore gas transmission pipelines based on about 5900 field-measured wall thicknesses collected from a pipeline system in Canada. The collected data cover a wide range of the pipe nominal wall thickness, from 3.18 to 16.67 mm. By considering the measurement error involved in the collected wall thickness data, statistical analyses indicate that the actual-over-nominal wall thickness ratio (AONR) follows a normal distribution with a mean of 1.01 and a coefficient of variation (COV) ranging from 1.6 to 2.2% depending on the nominal pipe wall thickness. The implications of the developed AONR statistics for the reliability analysis of corroded pipe joints are investigated. This study provides key input to the reliability-based design and assessment of pipelines with respect to various threats such as metal-loss corrosion and stress corrosion cracking.


2008 ◽  
Vol 2008 ◽  
pp. 1-19 ◽  
Author(s):  
H. Crowley ◽  
B. Borzi ◽  
R. Pinho ◽  
M. Colombi ◽  
M. Onida

Analytical vulnerability assessment methods should ideally be validated or verified by comparing their damage predictions with actual observed damage data. However, there are a number of difficulties related to the comparison of analytical damage predictions with observed damage; for example, there are large uncertainties related to the prediction of the ground motions to which the damaged buildings have been subjected. Until such problems can be resolved, it is worthwhile considering the mechanics of simplified analytical vulnerability assessment methods and validating this part of the methodology through comparisons with detailed structural models. This paper looks at two mechanics-based vulnerability assessment methods (DBELA and SP-BELA) and compares the nonlinear static response predicted with these methods with finite elements-based nonlinear analyses of prototype buildings. A comparison of the predicted response of urban populations of buildings using the two methods is then carried out, and the influence of these differences on vulnerability curves is studied.


Sign in / Sign up

Export Citation Format

Share Document