A Novel Two-Phase Gas\Liquid Slug Flow Measurement System Using a T-Junction Separator and Ultrasonic Measurements

Author(s):  
Khalifa M. Khalifa ◽  
Mike L. Sanderson

Over the last decade, the development and deployment of in-line multiphase flow metering systems has been a major focus worldwide. Accurate measurement of multiphase flow in the oil and gas industry is difficult because it occurs in wide range of flow regimes and multiphase meters do not generally perform well under the intermittent slug flow conditions which commonly occur in oil production. A novel ultrasonic multiphase metering concept has been proposed and investigated which measures the flow rates of the liquid and gas phases from ultrasonic measurements made in two different flow regimes – partially separated and homogeneous — in the same measurement system and fuses the data from the different flow regimes to obtain improved overall measurement accuracy. The system employs a partial gas/liquid separation using a T-junction configuration and a combination of Doppler and cross correlation. The partially separated flow regimes uses ultrasonic cross correlation measurement for the liquid flow measurement which has gas entrained within it. The homogeneous regime employs ultrasonic Doppler method. This approach has been tested on water/air flows on a 50mm facility in the Department of Process and Systems Engineering. The liquid and gas flowrate measurements using the proposed techniques were compared with a reference measurement and good agreements between these two measurements were obtained with error ranging from ± 2% and 10%, respectively. Such a performance offers the potential for an in-line multiphase flowmeter with improved performance.

2007 ◽  
Author(s):  
Zhiyao Huang ◽  
Chaohong He ◽  
Qilin Liang

2014 ◽  
Vol 614 ◽  
pp. 275-278
Author(s):  
Yu Tang ◽  
Xiang Deng ◽  
Shuo Tian

Electrostatic sensor is based on the principle of electrostatic induction. It is widely used for gas/solid two-phase flow measurement because it has the advantages of simple structure, high sensitivity, low cost, etc. In this paper, a velocity measurement system of gas/solid flow based on electrostatic sensor and cross-correlation algorithm is discussed. Electrostatic sensor with circular electrode is adopted. By COMSOL optimum simulation, the axial length of the electrode is designed. The signal conditioning circuits are discussed and cross-correlation algorithm is analyzed. The initial experimental results demonstrate that the velocity measurement system of gas/solid flow designed in this paper is feasible.


1998 ◽  
Vol 120 (1) ◽  
pp. 15-19 ◽  
Author(s):  
C. Kang ◽  
R. M. Vancko ◽  
A. S. Green ◽  
H. Kerr ◽  
W. P. Jepson

The effect of drag-reducing agents (DRA) on pressure gradient and flow regime has been studied in horizontal and 2-deg upward inclined pipes. Experiments were conducted for different flow regimes in a 10-cm i.d., 18-m long plexiglass system. The effectiveness of DRA was examined for concentrations ranging from 0 to 75 ppm. Studies were done for superficial liquid velocities between 0.03 and 1.5 m/s and superficial gas velocities between 1 and 14 m/s. The results indicate that DRA was effective in reducing the pressure gradients in single and multiphase flow. The DRA was more effective for lower superficial liquid and gas velocities for both single and multiphase flow. Pressure gradient reductions of up to 42 percent for full pipe flow, 81 percent for stratified flow, and 35 percent for annular flow were achieved in horizontal pipes. In 2 deg upward inclination, the pressure gradient reduction for slug flow, with a concentration of 50 ppm DRA, was found to be 28 and 38 percent at superficial gas velocities of 2 and 6 m/s, respectively. Flow regimes maps with DRA were constructed in horizontal pipes. Transition to slug flow with addition of DRA was observed to occur at higher superficial liquid velocities.


Author(s):  
N. R. Kesana ◽  
J. M. Throneberry ◽  
B. S. McLaury ◽  
S. A. Shirazi ◽  
E. F. Rybicki

Solid particle erosion is a mechanical process in which material is removed from a surface due to impacts of solid particles transported within a fluid. It is a common problem faced by the petroleum industry, as solid particles are also produced along with oil and gas. The erosion not only causes losses resulting from repairs and decreased production but also causes safety and environmental concerns. Therefore, the metal losses occurring in different multiphase flow patterns need to be studied and understood in order to develop protective guidelines for oil and gas production equipment. A large scale boom loop, which is capable of generating a wide variety of multiphase flow regimes was used for conducting experiments. Specifically, this work examines erosion measurements in multiphase slug and annular flow regimes. These flow regimes are selected since they produce higher metal losses than other flow regimes, and they also occur for a wide variety of operating conditions. Experiments are performed on a horizontal 0.0762 m (3-inch) diameter pipe, with superficial gas velocities ranging from 15.2 m/s (50 ft/s) to 45.7 m/s (150 ft/s) and superficial liquid velocities ranging from 0.46 m/s (1.5 ft/s) to 0.76 m/s (2.5 ft/s), for liquid viscosities of 1 cP and 10 cP. Carboxymethyl Cellulose (CMC) was used to increase the viscosity of the liquid without significantly altering the density of the liquid. Three different sand sizes (20, 150 and 300 micron sand) were used for performing tests. The shapes of the sand are also different with the 20 and 300 micron sand being sharper than the 150 micron sand. Erosion measurements are taken using Electrical Resistance (ER) probes which relate the change in electrical resistance to the change in the thickness of an exposed element resulting from erosion. Two probes are placed in a bend and another probe is placed in a straight section of pipe. The probes in the bend are flat-head probes, and they are placed flush with the outer wall in the 45 and 90 degree positions. The probe in the straight pipe is an angle-head probe which protrudes into the flow with the face placed in the center of the pipe. Under the flow conditions investigated, the angle-head probe measures the maximum erosion due to its placement. Results demonstrate a significant increase in the metal loss occurs when increasing the superficial gas velocity and decreasing the superficial liquid velocity. The effect of changing the viscosity of the liquid is not as clear. Results suggest a slight increase in metal loss by increasing the viscosity from 1cP to 10 cP in slug flow. However, for annular flow, higher erosion occurs for the lower liquid viscosity considered.


2011 ◽  
Vol 130-134 ◽  
pp. 1716-1719
Author(s):  
Xu Bing ◽  
Qian Ping ◽  
Zeng Kai

This paper introduced the application of pattern recognition in the measuring phase fraction of gas-powder mixed flow. Flow-through measurement system based on virtual instrument techniques; include the techniques of electrical capacitance tomography and cross-correlation velocity measurement technology. The module structure of the system is present. According the principle of the phase fraction based on pattern recognition technology, the arithmetic with C++ program is described in the paper. The experiment process for this flow-through measurement system and experiment results are described in this article.


2012 ◽  
Vol 462 ◽  
pp. 641-646
Author(s):  
Yan Long Wang ◽  
Jun Hua Zhang ◽  
Lu Lu Bu ◽  
Jun Yang ◽  
Xin Ling Shi

Cross correlator is the core device of the cross-correlation flow measurement system. This paper describes the theory of the cross-correlation flow measurement system and realizes the digital correlator for flow measurement based on field programmable gate arrays (FPGA). The correlation algorithm is realized by verilog language, and the result of Modelsim simulation shows that this correlator can be used to calculate the cross functions of random signal. This correlator which has a simple hardware structure, high reliability and high accuracy, can meet the demand of the real-time flow measurement system.


Author(s):  
S. P. C. Belfroid ◽  
M. F. Cargnelutti ◽  
W. Schiferli ◽  
Marlies van Osch

To be able to assess the mechanical integrity of piping structures for loading to multiphase flow conditions, air-water experiments were carried out in a horizontal 1″ pipe system. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations were measured: a baseline case consisting of a straight pipe only, a sharp edged bend, a large radius bend, a symmetric T-joint and a T-joint with one of the arms closed off. The gas flow was varied from a superficial velocity of 0.1 to 30 m/s and the liquid flow was varied from 0.05 to 2 m/s. This operating range ensures that the experiment encompasses all possible flow regimes. The magnitude of the measured forces was found to vary over a wide range depending on the flow regime. For slug flow conditions very high force levels were measured, up to 4 orders of magnitude higher than in single phase flow for comparable velocities. The annular flow regime resulted in the (relative) lowest forces, although the absolute amplitude is of the same order as in the case of slug flow. In case of slug flow, the measured results can be described assuming a simple slug unit model. For both the frequency and amplitude the available models can be used in assessments. In annular and stratified flow a different model is required, since no slug unit is present. Instead, the amplitude of the excitation force can be estimated using mixture properties. To predict the main frequency for the annular flow and stratified flow additional experiments are required.


Sign in / Sign up

Export Citation Format

Share Document