Flow Measurement in Bubbly and Slug Flow Regimes Using The Electromagnetic Flowmeter Developed

2002 ◽  
Vol 26 (11) ◽  
pp. 1559-1569
Author(s):  
Khalifa M. Khalifa ◽  
Mike L. Sanderson

Over the last decade, the development and deployment of in-line multiphase flow metering systems has been a major focus worldwide. Accurate measurement of multiphase flow in the oil and gas industry is difficult because it occurs in wide range of flow regimes and multiphase meters do not generally perform well under the intermittent slug flow conditions which commonly occur in oil production. A novel ultrasonic multiphase metering concept has been proposed and investigated which measures the flow rates of the liquid and gas phases from ultrasonic measurements made in two different flow regimes – partially separated and homogeneous — in the same measurement system and fuses the data from the different flow regimes to obtain improved overall measurement accuracy. The system employs a partial gas/liquid separation using a T-junction configuration and a combination of Doppler and cross correlation. The partially separated flow regimes uses ultrasonic cross correlation measurement for the liquid flow measurement which has gas entrained within it. The homogeneous regime employs ultrasonic Doppler method. This approach has been tested on water/air flows on a 50mm facility in the Department of Process and Systems Engineering. The liquid and gas flowrate measurements using the proposed techniques were compared with a reference measurement and good agreements between these two measurements were obtained with error ranging from ± 2% and 10%, respectively. Such a performance offers the potential for an in-line multiphase flowmeter with improved performance.


Author(s):  
M. R. Myers ◽  
H. M. Cave ◽  
S. P. Krumdieck

Two-phase intermittent gas and liquid slug flow in small diameter glass and plastic tubes was studied. Two distinct flow regimes and the transition phenomena were identified. A modified Hagen-Poiseuille relation was derived to describe the extremely high pressure drop due to the surface tension effects of pinned slug flow.


2018 ◽  
Vol 65 (8) ◽  
pp. 562-567 ◽  
Author(s):  
E. V. Usov ◽  
P. D. Lobanov ◽  
A. E. Kutlimetov ◽  
I. G. Kudashov ◽  
V. I. Chukhno ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 5163-5181
Author(s):  
Z. Q. Memon ◽  
W. Pao ◽  
F. Hashim ◽  
S. Ahmed

The experimental data for phase separation of the air-water mixture in a T-Junction with the expander section after the branch arm is presented in this work. The main and run arms of the T-junction are directed along the horizontal plane with the branch arm positioned in the vertical plane. The diameter of the main arm is 74 mm, with diameter ratio(s) of, 0.67, and 0.33 in relation to branch arm. At the inlet section of the T-junction, the flow regimes generated were stratified, stratified wavy and slug flow. At the inlet, the air and water superficial velocities are in the range of 0.25 - 0.140 m/s and 0.14-0.78 m/s respectively. The effect of the expander section after the branch arm, the air superficial velocity USA and water superficial velocity USw on liquid carryover (WL3/WL1)max in branch arm have been studied. Based on the experimental data obtained for T-junction with expander section, complete phase separation of air and water was observed in stratified and stratified wavy flow for all superficial velocities and improved phase separation for slug flow. In slug flow, increasing the liquid superficial velocity improves the phase separation but increasing the gas velocity decreases the phase separation. Finally, the volume weighted phase in this new T-junction design is compared with the phase separation data of a simple T-junction.


1998 ◽  
Vol 120 (1) ◽  
pp. 15-19 ◽  
Author(s):  
C. Kang ◽  
R. M. Vancko ◽  
A. S. Green ◽  
H. Kerr ◽  
W. P. Jepson

The effect of drag-reducing agents (DRA) on pressure gradient and flow regime has been studied in horizontal and 2-deg upward inclined pipes. Experiments were conducted for different flow regimes in a 10-cm i.d., 18-m long plexiglass system. The effectiveness of DRA was examined for concentrations ranging from 0 to 75 ppm. Studies were done for superficial liquid velocities between 0.03 and 1.5 m/s and superficial gas velocities between 1 and 14 m/s. The results indicate that DRA was effective in reducing the pressure gradients in single and multiphase flow. The DRA was more effective for lower superficial liquid and gas velocities for both single and multiphase flow. Pressure gradient reductions of up to 42 percent for full pipe flow, 81 percent for stratified flow, and 35 percent for annular flow were achieved in horizontal pipes. In 2 deg upward inclination, the pressure gradient reduction for slug flow, with a concentration of 50 ppm DRA, was found to be 28 and 38 percent at superficial gas velocities of 2 and 6 m/s, respectively. Flow regimes maps with DRA were constructed in horizontal pipes. Transition to slug flow with addition of DRA was observed to occur at higher superficial liquid velocities.


Sign in / Sign up

Export Citation Format

Share Document