Critical Buckling Strain in High Strength Steel Pipes Using Isotropic-Kinematic Hardening

Author(s):  
A. Fathi ◽  
J. J. Roger Cheng ◽  
Samer Adeeb ◽  
Joe Zhou

High strength steel pipes (HSSP) have become more popular recently for highly pressurized pipelines built to transport natural gas from remote fields to energy markets. Material tests on HSSP showed significant material anisotropy caused by the pipe making process, UOE. A combined isotropic-kinematic hardening material model is developed based on observations made on longitudinal and transverse stress strain data of HSSP. This material model combines linear isotropic hardening with Armstrong-Fredrick kinematic hardening and can be easily calibrated by longitudinal and transverse tension coupon test results. The proposed material model is used to show how considering material anisotropy affects the critical buckling strain of HSSP in the longitudinal direction. Finite element (FE) models are developed to simulate one pressurized and one unpressurised HSSP tested under monotonic displacement-controlled bending. Isotropic and anisotropic material modeling methods are used for each HSSP models. In the isotropic material model, longitudinal stress-strain data of HSSP material is used to define the stress-strain relationship. In the anisotropic model combined hardening material model, calibrated by longitudinal and transverse HSSP stress-strain data, is used. Critical buckling strain predictions by isotropic and anisotropic models of these pipes are compared with test results and also with some available criteria in standards and literatures. These comparisons show that anisotropic models give predictions closer to test results.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Mahdi Kiani ◽  
Roger Walker ◽  
Saman Babaeidarabad

One of the most important components in the hydraulic fracturing is a type of positive-displacement-reciprocating-pumps known as a fracture pump. The fluid end module of the pump is prone to failure due to unconventional drilling impacts of the fracking. The basis of the fluid end module can be attributed to cross bores. Stress concentration locations appear at the bores intersections and as a result of cyclic pressures failures occur. Autofrettage is one of the common technologies to enhance the fatigue resistance of the fluid end module through imposing the compressive residual stresses. However, evaluating the stress–strain evolution during the autofrettage and approximating the residual stresses are vital factors. Fluid end module geometry is complex and there is no straightforward analytical solution for prediction of the residual stresses induced by autofrettage. Finite element analysis (FEA) can be applied to simulate the autofrettage and investigate the stress–strain evolution and residual stress fields. Therefore, a nonlinear kinematic hardening material model was developed and calibrated to simulate the autofrettage process on a typical commercial triplex fluid end module. Moreover, the results were compared to a linear kinematic hardening model and a 6–12% difference between two models was observed for compressive residual hoop stress at different cross bore corners. However, implementing nonlinear FEA for solving the complicated problems is computationally expensive and time-consuming. Thus, the comparison between nonlinear FEA and a proposed analytical formula based on the notch strain analysis for a cross bore was performed and the accuracy of the analytical model was evaluated.


2012 ◽  
Vol 79 (5) ◽  
Author(s):  
Sunil Neupane ◽  
Samer Adeeb ◽  
Roger Cheng ◽  
James Ferguson ◽  
Michael Martens

The material model proposed in Part I (Neupane et al., 2012, “Modeling the Deformation Response of High Strength Steel Pipelines—Part I: Material Characterization to Model the Plastic Anisotropy,” ASME J. Appl. Mech., 79, p. 051002) is used to study the deformation response of high strength steel. The response of pipes subjected to frost upheaval at a particular point is studied using an assembly of pipe elements, while buckling of pipes is examined using shell elements. The deformation response is obtained using two different material models. The two different material models used were the isotropic hardening material model and the combined kinematic hardening material model. Two sets of material stress-strain data were used for the isotropic hardening material model; data obtained from the longitudinal direction tests and data obtained from the circumferential direction tests. The combined kinematic hardening material model was calibrated to provide an accurate prediction of the stress-strain behavior in both the longitudinal direction and the circumferential direction. The deformation response of a pipe model using the three different material data sets was studied. The sensitivity of the response of pipelines to the choice of a material model and the material data set is studied for the frost upheaval and local buckling.


2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2017 ◽  
Vol 52 (14) ◽  
pp. 1847-1872 ◽  
Author(s):  
Bilal Khaled ◽  
Loukham Shyamsunder ◽  
Canio Hoffarth ◽  
Subramaniam D Rajan ◽  
Robert K Goldberg ◽  
...  

Test procedures for characterizing the orthotropic behavior of a unidirectional composite at room temperature and quasi-static loading conditions are developed and discussed. The resulting data consisting of 12 stress–strain curves and associated material parameters are used in a newly developed material model—an orthotropic elasto-plastic constitutive model that is driven by tabulated stress–strain curves and other material properties that allow for the elastic and inelastic deformation model to be combined with damage and failure models. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used to illustrate how the experimental procedures are developed and used. The generated data are then used to model a dynamic impact test. Results show that the developed framework implemented into a special version of LS-DYNA yields reasonably accurate predictions of the structural behavior.


2021 ◽  
Author(s):  
Charles R. Krouse ◽  
Grant O. Musgrove ◽  
Taewoan Kim ◽  
Seungmin Lee ◽  
Muhyoung Lee ◽  
...  

Abstract The Chaboche model is a well-validated non-linear kinematic hardening material model. This material model, like many models, depends on a set of material constants that must be calibrated for it to match the experimental data. Due to the challenge of calibrating these constants, the Chaboche model is often disregarded. The challenge with calibrating the Chaboche constants is that the most reliable method for doing the calibration is a brute force approach, which tests thousands of combinations of constants. Different sampling techniques and optimization schemes can be used to select different combinations of these constants, but ultimately, they all rely on iteratively selecting values and running simulations for each selected set. In the experience of the authors, such brute force methods require roughly 2,500 combinations to be evaluated in order to have confidence that a reasonable solution is found. This process is not efficient. It is time-intensive and labor-intensive. It requires long simulation times, and it requires significant effort to develop the accompanying scripts and algorithms that are used to iterate through combinations of constants and to calculate agreement. A better, more automated method exists for calibrating the Chaboche material constants. In this paper, the authors describe a more efficient, automated method for calibrating Chaboche constants. The method is validated by using it to calibrate Chaboche constants for an IN792 single-crystal material and a CM247 directionally-solidified material. The calibration results using the automated approach were compared to calibration results obtained using a brute force approach. It was determined that the automated method achieves agreeable results that are equivalent to, or supersede, results obtained using the conventional brute force method. After validating the method for cases that only consider a single material orientation, the automated method was extended to multiple off-axis calibrations. The Chaboche model that is available in commercial software, such as ANSYS, will only accept a single set of Chaboche constants for a given temperature. There is no published method for calibrating Chaboche constants that considers multiple material orientations. Therefore, the approach outlined in this paper was extended to include multiple material orientations in a single calibration scheme. The authors concluded that the automated approach can be used to successfully, accurately, and efficiently calibrate multiple material directions. The approach is especially well-suited when off-axis calibration must be considered concomitantly with longitudinal calibration. Overall, the automated Chaboche calibration method yielded results that agreed well with experimental data. Thus, the method can be used with confidence to efficiently and accurately calibrate the Chaboche non-linear kinematic hardening material model.


2019 ◽  
Vol 287 ◽  
pp. 02002
Author(s):  
Marina Franulovic ◽  
Kristina Markovic ◽  
Zdravko Herceg

Gears are mechanical components which experience high dynamic loading during their exploitation period. Therefore, their load carrying capacity together with life expectancy are often the main research interest in various studies. The research presented in this paper is focused on the materials response in spur gears tooth root, with the attention given to the repeated overloads during gears operation. In order to simulate low cycle fatigue by using numerical modeling of stress - strain relationship within material, the material model which takes into account isotropic and kinematic hardening is used here. Material response of specimens produced out of steel 42CrMo4 in different loading conditions is used for the calibration of material model, which is then applied to simulate damage initiation and materials stress - strain response in gears tooth root. The results show that materials response to the given loading conditions non-linearly change through the loading cycles.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Sergei Alexandrov ◽  
Woncheol Jeong ◽  
Kwansoo Chung

Using Tresca's yield criterion and its associated flow rule, solutions are obtained for the stresses and strains when a thick-walled tube is subject to internal pressure and subsequent unloading. A bilinear hardening material model in which allowances are made for a Bauschinger effect is adopted. A variable elastic range and different rates under forward and reversed deformation are assumed. Prager's translation law is obtained as a particular case. The solutions are practically analytic. However, a numerical technique is necessary to solve transcendental equations. Conditions are expressed for which the release is purely elastic and elastic–plastic. The importance of verifying conditions under which the Tresca theory is valid is emphasized. Possible numerical difficulties with solving equations that express these conditions are highlighted. The effect of kinematic hardening law on the validity of the solutions found is demonstrated.


2010 ◽  
Vol 97-101 ◽  
pp. 200-203 ◽  
Author(s):  
Ke Chen ◽  
Jian Ping Lin ◽  
Mao Kang Lv ◽  
Li Ying Wang

With the increasing use of finite element analysis method in sheet forming simulations, springback predictions of advanced high strength steel (AHSS) sheet are still far from satisfactory precision. The main purpose of this paper was to provide a method for accurate springback prediction of AHSS sheet. Material model with Hill’48 anisotropic yield criterion and nonlinear isotropic/kinematic hardening rule were applied to take account the anisotropic yield behavior and the Bauschinger effect during forming processes. U-channel forming and springback simulation was performed using ABAQUS software. High strength DP600 sheet was investigated in this work. The simulation results obtained with the proposed material model agree well with the experimental results, which show a remarkable improvement of springback prediction compared with the commonly used isotropic hardening model.


Sign in / Sign up

Export Citation Format

Share Document