A System Based Approach to Achieve Long Term Integrity of Gas Facilities

Author(s):  
W. Sloterdijk ◽  
M. Hommes

In today’s challenging environment, the priority for many oil and gas operation companies is to design, build and safely operate facilities at optimum cost efficiency. This means that new facility designs must consider critical facility integrity and that existing facilities are operated well beyond their intended design life. Main gas transmission systems are now some 50 years old and operate for longer periods than anticipated during design and construction for reasons such as; the transition to renewables with another 50 years of service foreseen, and; gas transmission systems that operate satisfactorily, have very low failure rates and for which the planned safe life time extension is expected to be the lowest cost option.

2007 ◽  
Vol 47 (1) ◽  
pp. 301
Author(s):  
G.R. Keen ◽  
M.G. Sethi

ExxonMobil Australia Pty Ltd’s subsidiary, Esso Australia Resources Pty Ltd (ExxonMobil), and BHP Billiton jointly own and operate an LPG fractionation facility at Long Island Point, near Hastings in Victoria. This facility began operating in 1970 as part of the overall development of Gippsland oil and gas resources. The facility had a nominal design life of 30 years; however, the facility will be required to operate for many more years, given the significant gas reserves remaining in Bass Strait. A plan was developed to identify and progress plant facility upgrades to ensure continued, safe operation to life end. Nine separate projects with a total value in excess of A$250 million were developed and are now in various stages of progress. The key projects include: refrigerated LPG storage tank refurbishment, fire system upgrade, a new control room and control system, and plant emergency shutdown system upgrades. These projects focus on achieving high standards of safe operations and long-term reliability through application of advances in technology to ready the facilities for their remaining life.


1994 ◽  
Vol 16 (2) ◽  
pp. 43-48
Author(s):  
Do Son

This paper describes the results of measurements and analysis of the parameters, characterizing technical state of offshore platforms in Vietnam Sea. Based on decreasing in time material characteristics because of corrosion and local destruction assessment on residual life time of platforms is given and variants for its repair are recommended. The results allowed to confirm advantage of proposed technical diagnostic method in comparison with others and have been used for oil and gas platform of Joint Venture "Vietsovpetro" in South Vietnam.


Author(s):  
Adnan Khalaf i Hammed Al-Badrani ◽  
Hind Ziyad Nafeih

The Belt and Road Initiative is an initiative to revive the ancient Silk Road, through networks of land and sea roads, oil and gas pipelines, electric power lines, the Internet and airports, to create a model of regional and international cooperation.       It is essentially a long-term development strategy, launched by the Chinese president in 2013 to become the main engine of Chinese domestic policy and foreign diplomacy and within the framework of the soft power strategy, to enhance its position and influence in the world as a peaceful and responsible country.   The study includes identifying the initiative and setting goals for China, as well as the challenges and difficulties that hinder the initiative.


2019 ◽  
Vol 85 (9) ◽  
pp. 61-65
Author(s):  
N. A. Makhutov

We consider and analyze general methodological issues regarding the strength and endurance (life-time) of the materials and structure elements under a combined effect of various force, deformation and temperature factors. The Journal "Zavodskaya laboratoriya. Diagnostika materialov" (Industrial laboratory. Diagnostics of materials) has launched systematic publications on this problematic since 2018. For many decades, domestic and foreign laboratory studies have gleaned to a traditional methodology for obtaining initial curves of the long-term and cyclic strength that related the breaking stresses with time or number of cycles. These curves, with the characteristic sections and break points, separating the areas of elastic and inelastic (plastic strain or creep strain) strain, are used in analysis of long-term and cyclic damage. Using the elementary linear law of damage summation, it is possible to calculate at a first approximation the strength and endurance under varying conditions of loading. Stepping up the requirements to the accuracy of calculations necessitates a transition from force fracture criteria (at stresses a) to deformation criteria (in elastic and inelastic deformations e). Thus, it becomes possible to construct and use a unified expression for the curve of the long-term cyclic fracture (taking into account the temporal x and cyclic N factors) and a long-term cyclic damage. With such approach it is possible to remain the linear law of damage summation though those damages are obviously nonlinear. The goal of the study is to continue and support the discussion of the most complex problems of a comprehensive assessment of the strength, resource, survivability and safety of high-risk engineering equipment within the journal pages.


2020 ◽  
Vol 26 (1) ◽  
pp. 35-45 ◽  
Author(s):  
A. G. Kazanin

The modern oil and gas industry is heavily dependent on the processes and trends driven by the accelerating digitalization of the economy. Thus, the digitalization of the oil and gas sector has become Russia’s top priority, which involves a technological and structural transformation of all production processes and stages.Aim. The presented study aims to identify the major trends and prospects of development of the Russian oil and gas sector in the context of its digitalization and formation of the digital economy.Tasks. The authors analyze the major trends in the development of the oil and gas industry at a global scale and in Russia with allowance for the prospects of accelerated exploration of the Arctic; determine the best practices of implementation of digital technologies by oil and gas companies as well as the prospects and obstacles for the subsequent transfer of digital technologies to the Russian oil and gas industry.Methods. This study uses general scientific methods, such as analysis, synthesis, and scientific generalization.Results. Arctic hydrocarbons will become increasingly important to Russia in the long term, and their exploration and production will require the implementation of innovative technologies. Priority directions for the development of many oil and gas producers will include active application of digital technologies as a whole (different types of robots that could replace people in performing complex procedures), processing and analysis of big data using artificial intelligence to optimize processes, particularly in the field of exploration and production, processing and transportation. Digitalization of the oil and gas sector is a powerful factor in the improvement of the efficiency of the Russian economy. However, Russian companies are notably lagging behind in this field of innovative development and there are problems and high risks that need to be overcome to realize its potential for business and society.Conclusions. Given the strategic importance of the oil and gas industry for Russia, its sustainable development and national security, it is recommendable to focus on the development and implementation of digital technologies. This is crucial for the digitalization of long-term projection and strategic planning, assessment of the role and place of Russia and its largest energy companies in the global market with allowance for a maximum number of different internal and external factors.


2020 ◽  
Vol 16 (2) ◽  
pp. 168-175 ◽  
Author(s):  
Merve Tumur ◽  
Gulsah Saydan Kanberoglu ◽  
Fatih Coldur

Background: Cysteamine is used as an orphan drug in the treatment of cystinosis to prevent long-term cystine accumulation in lysosomes. Dosing in cysteamine treatment is extremely important and overdose may cause some side effects. Up to now, various analytical methods have been used for cysteamine determination. Many of these methods require sophisticated instruments, expert operators, time-consuming measurement procedures and manipulation steps, expensive supplies and long analysis time. Aims and Objective: The present study deals with the development of a potentiometric PVC-membrane cysteamine-selective electrode based on an ion-pair of cysteamine and its application in a pharmaceutical formulation. Methods: Cysteamine (Cys)-Phosphomolybdate (PM) ion-pair was synthesized by mixing the equal volumes of 10-2 M Cysteamine HCl and sodium phosphomolybdate aqueous solutions. The obtained precipitate was used as ionophore in the structure of PVC-membrane. Results and Discussion: The electrode exhibited a linear response in the concentration range of 1.0×10- 1-1.0×10-5 M cysteamine with a slope of 51,7 mV per decade and detection limit of 1.0×10-5 M. The potentiometric response of the electrode was very rapid (5 s), adequately repeatable, stable and selective. pH working range and life-time of the electrode were also determined as 3.0-7.0 and 25 days, respectively. Conclusion: A PVC-membrane cysteamine selective electrode was easily prepared. Cysteamine determination in a pharmaceutical formulation was performed. Analysis results indicated that it can be successfully used in drug quality control laboratories for routine analysis of cysteamine in pharmaceutical preparations alternative to more sophisticated, expensive and time-consuming analytical methods.


Sign in / Sign up

Export Citation Format

Share Document