Implementation of Quantitative Risk Assessment: Case Study

Author(s):  
David Mangold ◽  
W. Kent Muhlbauer ◽  
Jim Ponder ◽  
Tony Alfano

Risk management of pipelines is a complex challenge due to the dynamic environment of the real world coupled with a wide range of system types installed over many decades. Various methods of risk assessment are currently being used in industry, many of which utilize relative scoring. These assessments are often not designed for the new integrity management program (IMP) requirements and are under direct challenge by regulators. SemGroup had historically used relative risk assessment methodologies to help support risk management decision-making. While the formality offered by these early methods provided benefits, it was recognized that, in order to more effectively manage risk and better meet the United States IMP objectives, a more effective risk assessment would be needed. A rapid and inexpensive migration into a better risk assessment platform was sought. The platform needed to be applicable not only to pipeline miles, but also to station facilities and all related components. The risk results had to be readily understandable and scalable, capturing risks from ‘trap to trap’ in addition to risks accompanying each segment. The solution appeared in the form a quantitative risk assessment that was ‘physics based’ rather than the classical statistics based QRA. This paper will outline the steps involved in this transition process and show how quantitative risk assessment may be efficiently implemented to better guide integrity decision-making, illustrated with a case study from SemGroup.

2017 ◽  
Vol 26 (7) ◽  
pp. 551 ◽  
Author(s):  
Christopher J. Dunn ◽  
David E. Calkin ◽  
Matthew P. Thompson

Wildfire’s economic, ecological and social impacts are on the rise, fostering the realisation that business-as-usual fire management in the United States is not sustainable. Current response strategies may be inefficient and contributing to unnecessary responder exposure to hazardous conditions, but significant knowledge gaps constrain clear and comprehensive descriptions of how changes in response strategies and tactics may improve outcomes. As such, we convened a special session at an international wildfire conference to synthesise ongoing research focused on obtaining a better understanding of wildfire response decisions and actions. This special issue provides a collection of research that builds on those discussions. Four papers focus on strategic planning and decision making, three papers on use and effectiveness of suppression resources and two papers on allocation and movement of suppression resources. Here we summarise some of the key findings from these papers in the context of risk-informed decision making. This collection illustrates the value of a risk management framework for improving wildfire response safety and effectiveness, for enhancing fire management decision making and for ushering in a new fire management paradigm.


2007 ◽  
Vol 70 (7) ◽  
pp. 1744-1751 ◽  
Author(s):  
ISABEL WALLS

A microbial risk assessment (MRA) can provide the scientific basis for risk management decision making. Much data are needed to complete an MRA, including quantitative data for pathogens in foods. The purpose of this document was to provide information on data needs and data collection approaches for MRAs that will be useful for national governments, particularly in developing countries. A framework was developed, which included the following activities: (i) identify the purpose of data collection—this should include stating the specific question(s) to be addressed; (ii) identify and gather existing data—this should include a determination of whether the data are sufficient to answer questions to be addressed; (iii) develop and implement a data collection strategy; (iv) analyze data and draw conclusions; and (v) use data to answer questions identified at the start of the process. The key data needs identified for an MRA were as follows: (i) burden of foodborne or waterborne disease; (ii) microbial contamination of foods; and (iii) consumption patterns. In addition, dose-response data may be necessary, if existing dose-response data cannot be used to estimate dose response for the population of interest. Data should be collected with a view to its use in risk management decision making. Standard sampling and analysis methods should be used to ensure representative samples are tested, and care should be taken to avoid bias when selecting data sets. A number of barriers to data collection were identified, including a lack of clear understanding of the type of data needed to undertake an MRA, which is addressed in this document.


Author(s):  
Jana Müllerová

Purpose – The aim of this paper is to introduce new risk management method based on quantitative approach. RM/RA CRAMM was designed by Slovak researchers as user-friendly method for Public institutions dealing with risk management, crisis planning, civil protection. It has a multipurpose use. Design/methodology/approach – Three-phase procedure is introduced, including risk identification, analysis and evaluation. The case-study of risk assessment as an example of the application is included. Findings – Quantitative methods in risk management are rare due to the complex of factors influencing the risks being assessed. Research limitations/implications – A complex Area/Location risk assessment needs number of exact values and estimations for proper risk identification. Team-work is very welcomed but not necessary. Practical implications – Practical value of the method is incredible due to its applicability on the wide range of the research fields related to the risk management. Originality/Value – The method introduced is an original product of Slovak team of researchers led by author of this paper. Keywords: RM/RA CRAMM, risk management, risk assessment, quantitative, single equation method, case study. Research type: case study. JEL classification: C20 – General.


2018 ◽  
Vol 23 (4) ◽  
pp. 67 ◽  
Author(s):  
Silvia Carpitella ◽  
Fortunato Carpitella ◽  
Antonella Certa ◽  
Julio Benítez ◽  
Joaquín Izquierdo

Human factors are intrinsically involved at virtually any level of most industrial/business activities, and may be responsible for several accidents and incidents, if not correctly identified and managed. Focusing on the significance of human behaviour in industry, this article proposes a multi-criteria decision-making (MCDM)-based approach to support organizational risk assessment in industrial environments. The decision-making trial and evaluation laboratory (DEMATEL) method is proposed as a mathematical framework to evaluate mutual relationships within a set of human factors involved in industrial processes, with the aim of highlighting priorities of intervention. A case study related to a manufacturing process of a real-world winery is presented, and the proposed approach is applied to rank human factors resulting from a previous organisational risk evaluation from which suitable inference engines may be developed to better support risk management.


Author(s):  
Frank Daumann ◽  
Florian Follert ◽  
Werner Gleißner ◽  
Endre Kamarás ◽  
Chantal Naumann

The COVID-19 pandemic is permanently changing modern social and economic coexistence. Most governments have declared infection control to be their top priority while citizens face great restrictions on their civil rights. A pandemic is an exemplary scenario in which political actors must decide about future, and thus uncertain, events. This paper tries to present a tool well established in the field of entrepreneurial and management decision making which could also be a first benchmark for political decisions. Our approach builds on the standard epidemiological SEIR model in combination with simulation techniques used in risk management. By our case study we want to demonstrate the opportunities that risk management techniques, especially risk analyses using Monte Carlo simulation, can provide to policy makers in general, and in a public health crisis in particular. Hence, our case study can be used as a framework for political decision making under incomplete information and uncertainty. Overall, we want to point out that a health policy that aims to provide comprehensive protection against infection should also be based on economic criteria. This is without prejudice to the integration of ethical considerations in the final political decision.


1990 ◽  
Vol 6 (5) ◽  
pp. 245-255 ◽  
Author(s):  
Si Duk Lee

Noncriteria air pollutants are synonymous with hazardous air pollutants (HAPs), air toxics or toxic air pollutants (TAPs). The term noncriteria pollutants refers to all air pollutants except for the criteria pollutants (SOx, PM, NOx, CO, O3, and Pb). Air toxics are pervasive in our environment worldwide in varying degrees. Uses of these chemicals are varied and numerous; their emissions are ubiquitous, and they include organic compounds such as chlorinated hydrocarbons, dioxins, aldehydes, polynuclear aromatic hydrocarbons, and heavy metals such as chromium, nickel, cadmium, and mercury. There are more than 70,000 chemicals that are in use commercially in the United States, and we know relatively little about their ambient concentrations, persistence, transport and transformation as well as their effects on health and the environment, many of which take decades to emerge. The United States Environmental Protection Agency, under the authority of Section 112 of the Clean Air Act, is mandated to regulate any air pollutant which, in the Administrator's judgment, “causes, or contributes to, air pollution which may reasonably be anticipated to result in an increase in serious irreversible or incapacitating reversible illness.” For such regulatory decision-making, EPA's Office of Health and Environmental Assessment (OHEA) provides scientific assessment of health effects for potentially hazardous air pollutants. In accordance with risk assessment guidelines developed by OHEA over the years, Health Assessment Documents (HADs) containing risk assessment information were prepared and were subjected to critical review and careful revision to produce Final Draft HADs which serve as scientific databases for regulatory decision-making by the Office of Air Quality Planning and Standards (OAQPS) in its risk management process. EPA developed databases such as the Integrated Risk Information System (IRIS) and the National Air Toxics Information Clearinghouse (NATICH) and a technical assistance response system called the Air Risk Information Support Center (AIR RISC), in addition, to help in implementation of the National Air Toxics Program by state and local regulators.


Sign in / Sign up

Export Citation Format

Share Document