Remaining Strength in Pressure Vessels With Pitting Type Metal Loss: Part 1

Author(s):  
J. J. Trujillo-Tadeo ◽  
J. L. González-Velázquez ◽  
D. I. Rivas-López

This work proposes an assessment procedure for the determination of the remaining strength in pressure vessels with pitting type metal loss, trough the developed of integrity diagrams according to the pitting density, pitting depths and the internal pressure of the component using Finite Element Analysis simulations. The simulations results indicate that the pitting density and depths according to the Gumbel Max Distribution, are the main factors that determine the mechanical integrity of the component; where 45% damaged area by pitting generates a stress concentration that multiplies at least ten times the stress compared with components without defects, since these variables present a synergistic behavior in the stress state. The proposed assessment procedure facilitates the evaluation of the components that present pitting corrosion damage, due to the geometric and population effect of the pitting is considered in the finite element simulation.

Author(s):  
Michael C. Gibson ◽  
Amer Hameed ◽  
John G. Hetherington

Swaging is one method of autofrettage, a means of pre-stressing high-pressure vessels to increase their fatigue lives and load bearing capacity. Swaging achieves the required deformation through physical interference between an oversized mandrel and the bore diameter of the tube, as it is pushed through the tube. A Finite Element model of the swaging process was developed, in ANSYS, and systematically refined, to investigate the mechanism of deformation and subsequent development of residual stresses. A parametric study was undertaken, of various properties such as mandrel slope angle, parallel section length and friction coefficient. It is observed that the axial stress plays a crucial role in the determination of the residual hoop stress and reverse yielding. The model, and results obtained from it, provides a means of understanding the swaging process and how it responds to different parameters. This understanding, coupled with future improvements to the model, potentially allows the swaging process to be refined, in terms of residual stresses development and mandrel driving force.


2005 ◽  
Vol 14 (4) ◽  
pp. 096369350501400
Author(s):  
G. Albertini ◽  
E. Girardin ◽  
A. Giuliani ◽  
D.E. Ilie ◽  
B.P. O'Donnell ◽  
...  

The introduction of reinforcement in a Metal Matrix causes micro-stresses which may prove to be very detrimental for the life of the component. Submitting the components to annealing thermal treatments introduces thermal mismatch stresses. They are generated during cooling due to the difference between the thermal expansion coefficient of the two phases. Finite Element Analysis has been performed to study this effect and the results have been experimentally validated by X-ray diffraction, SEM investigation and EDAX on an AA2009 + 25% SiCp extruded shaft for helicopters, simplified as a thin extruded tube.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Michael C. Gibson ◽  
Amer Hameed ◽  
John G. Hetherington

Swaging is one method of autofrettage, a means of prestressing high-pressure vessels to increase their fatigue lives and load bearing capacity. Swaging achieves the required deformation through physical interference between an oversized mandrel and the bore diameter of the tube, as it is pushed through the tube. A finite element model of the swaging process was developed, in ansys, and systematically refined, to investigate the mechanism of deformation and subsequent development of residual stresses. A parametric study was undertaken, of various properties such as mandrel slope angle, parallel section length, and friction coefficient. It is observed that the axial stress plays a crucial role in the determination of the residual hoop stress and reverse yielding. The model, and results obtained from it, provides a means of understanding the swaging process and how it responds to different parameters. This understanding, coupled with future improvements to the model, potentially allows the swaging process to be refined, in terms of residual stresses development and mandrel driving force.


Author(s):  
Antonio Pereira ◽  
Carlos Bomfimsilva ◽  
Luciano Franco ◽  
Luciano Tardelli ◽  
Uwa Eigbe

The DNV RP 105 standard provides guidelines for evaluating the fatigue damage of pipelines over free spans, where guidance is provided for calculating the approximate Vortex Induced Vibration (VIV) response, considering the pipe properties, the span geometry, the pipe-soil interaction and the effective axial force. The approximate response models are limited, however, to single spans with leveled shoulders, short length, i.e. span lengths less than 140 times the pipe diameter, and bar buckling not influencing the pipeline dynamic response. To overcome these limitations, specifically for “long” spans and multi-spanning pipelines, RP F105 recommends that eigen-value analysis be performed using Finite Element (FE) method to calculate the natural frequencies, mode shapes and corresponding stresses associated with the mode shapes considered for VIV fatigue assessment. In this sense, a methodology and suite of Finite Element (FE) based tools for multi-mode/multi-span VIV fatigue assessment have been developed. The FE methodology accounts for the initial static equilibrium configuration of the pipeline in the as-laid condition followed by application of the subsequent load steps, such as flooding, hydrotesting, dewatering, start-up, etc. It also considers the non-linearity of the seabed stiffness and the effect of geometric non-linearity/large deflections on the dynamic response of the pipeline. In addition, the FE approach allows the determination of the dynamic response at every location of the free span for the different mode shapes and hence offers the ability to calculate the distributed fatigue damage along the spanning section of the pipeline instead of assuming all damage occurring at a single location. The methodology was applied in recent projects to allow for a better estimate of the requirements for free span correction with significant cost savings anticipated. The proposed methodology also has the potential for post-lay assessment of the pipelines and for through-life in-service assessment of existing pipelines, where new free spans are often observed during inspection due to soil movements along the lifetime of the pipeline. This paper addresses the in-place FE methodology, the validation process and the tools that were developed to speed up the fatigue assessment procedure, which is a key factor especially when analyzing post-lay survey in real-time for determination of requirements for free span correction in the field.


Author(s):  
Atsushi Ohno ◽  
Yoshiaki Uno ◽  
Takayasu Tahara

Recently, Codes and Standards for FFS assessment has been developed and applied in United States and other countries such as API RP579 as a series of maintenance procedures for pressure equipment. Activities developing FFS assessment procedures in conjunction with new safe inspection standards are also progressing in Japan. In order to prove applicability of the FFS procedure for assessment of damaged pressure equipment, it is also important to validate how much of inservice safe margin is derived from the FFS assessment procedures in compared with design margin of pressure equipment. Local metal loss assessment procedure specified by API RP579 is studied using finite element analysis and discussed how much of in-service safe margin will be sufficient as standardized FFS assessment procedure.


Author(s):  
Takuyo Kaida

Fitness-For-Service (FFS) assessment procedure can be also used to determine a reduced Maximum Allowable Working Pressure (MAWP) for cylindrical and spherical pressure vessel with local metal loss. A reduced MAWP is calculated from the Remaining Strength Factor (RSF). RSF is defined as ratio between plastic collapse load of the damaged component and that of the undamaged component. RSF needs to be calculated accurately in order to continue the damaged component in service safely. In this paper, RSFs of the damaged components with variously-shaped local metal loss were investigated. Especially, effects of circumferential width of local metal loss for cylindrical pressure vessel are investigated by both hydrostatic burst test and finite element analysis (FEA). The configurations of the local metal loss are rectangle. The longitudinal length and minimum thickness are fixed. FEA using the criterion proposed by Miyazaki et al. is effective to estimate fracture ductility under the multi-axial stress condition accurately, and effects of circumferential width is evaluated. In addition, RSF for spherical pressure vessel with relatively large diameter/thickness ratio was calculated by finite element analysis. Both results were compared to the calculation results using the equation in API 579-1/ASME FFS-1. The FFS assessment procedure is validated as conservative assessment experimentally and numerically.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


Sign in / Sign up

Export Citation Format

Share Document