The Story of the Dent-Gouge Fracture Model

Author(s):  
Andrew Cosham ◽  
Phil Hopkins

Abstract Once upon a time the dent-gouge fracture model was developed by the then British Gas Corporation to estimate the burst pressure of a dent and gouge subject to internal pressure. The dent-gouge fracture model is based on a two-dimensional representation of a dent and gouge; it assumes an infinitely long, longitudinally-orientated gouge (a crack) at the base of infinitely long, longitudinally-orientated dent. The model was calibrated using the results of 109 ring tests and 23 vessel tests conducted by the British Gas Corporation; a dent was introduced and then a slot was machined in the base of the dent (all at zero pressure). It is a semi-empirical model. Part 12 of API 579-1/ASME FFS-1 2016 quotes the original dent-gouge fracture model. A number of variations on the theme of the original dent-gouge fracture model have been developed. The variants have not significantly improved the accuracy of the original model, as is demonstrated by comparing the variants against the results of burst tests on rings and vessels containing a dent and gouge (or notch) reported in the published literature. The dent-gouge fracture model is deconstructed in order to illustrate its component parts. The deconstruction clearly identifies the parts of the model that could be improved. It also highlights where semi-empiricism is embedded in the model. The effect of changes to the original model is illustrated using the results of the full-scale tests. The difficulties introduced by the scatter in the full-scale tests are discussed, noting that a number of different methods have been used to introduce the dent and gouge (or notch) into the ring or vessel. A factor of safety is proposed. Pointers are given to how the dent-gouge fracture model might be improved or replaced. The need for a dent-gouge model is also considered, in the context of the guidance given in API Recommended Practice 1160 and ASME B31.8S.

1995 ◽  
Vol 117 (2) ◽  
pp. 126-132 ◽  
Author(s):  
F. P. Brennan

This paper reports full-scale tests on threaded connections used in drill strings. A concise background is given concerning the in-service environment and loading conditions on the connections. This details some of the reasons particular steels are used in preference to others. Crack growth data is given for ten full-scale axial and rotating bend tests. This is compared with predictions from a dedicated weight function fracture mechanics solution designed for threaded connections. Crack aspect ratio is considered with a view to development of an appropriate empirical model.


Author(s):  
Chike Okoloekwe ◽  
Matthew Fowler ◽  
Amandeep Virk ◽  
Nader Yoosef-Ghodsi ◽  
Muntaseer Kainat

Abstract Dents in a pipe result in alteration of its structural response when subjected to internal pressure. Excavation activities further lead to change in load and boundary conditions of the pipe segment which may exacerbate the stress state within the dented region. Depending on the severity of a dent, excavation under full operating pressure may lead to failure, injuries or fatalities. Although uncommon, an incident has been reported on a gas pipeline where a mechanical damage failed during investigation leading to one death and one injury [10]. While current pipeline regulations require that operators must depressurize a line to ensure safe working conditions during repair activities, there are no detailed provisions available in the codes or standards on how an operator should determine such a safe excavation pressure (SEP). As a result, the safe excavation process of dents has received attention in the industry in recent years. A detailed review of the recent research on dent SEP showed that the current recommendations are primarily dependent on one of two aspects: careful assessment of inline inspection (ILI) data, or a fitness for service (FFS) assessment of the dent feature leveraging numerical models. Enbridge Liquid Pipelines had previously demonstrated a feature specific assessment approach which incorporated both ILI data and finite element analysis (FEA) to determine the SEP. This assessment also accounted for uncertainties associated with material properties and ILI tool measurement. In the previous publication, the authors demonstrated a methodology for assessing the SEP of dents at a conceptual level from both deterministic and reliability-based standpoints. In this paper, a validation study has been performed to compare the results of fracture mechanics based FEA models against ten full scale burst tests available in literature. The study showed good agreement of the burst pressure of dent-crack defects predicted by FEA models with those observed in the full-scale tests. The assessment method is further streamlined by incorporating the API 579 [14] Failure Assessment Diagram (FAD) method on an uncracked FEA model as opposed to explicitly incorporating the crack geometry in the FEA model. The results of FEA in conjunction with FAD are compared with the full-scale tests to ensure accuracy and conservatism of burst pressure prediction. A reliability-based approach is then designed which accounts for the uncertainties associated with the analysis. A case study is presented where the reliability-based SEP assessment method has been implemented and feature specific SEP has been recommended to ensure target reliability during excavation.


Author(s):  
Honggang Zhou ◽  
Yong-Yi Wang ◽  
Steve Nanney

Wrinkles may form in pipelines experiencing high longitudinal strains in areas of ground movement and seismic activities. Current assessment procedures for wrinkles were developed and validated under the assumption that the predominant loading was internal pressure and that the level of longitudinal strain was low. The impact of wrinkles on the burst pressure of pipes under high longitudinal strain is not known. This paper describes work funded by US DOT PHMSA on the assessment of burst pressure of wrinkled pipes under high longitudinal strain. Both numerical analyses and full-scale tests were conducted to examine the burst pressure of wrinkled pipes. The numerical analysis results were compared with the full-scale test data. The effect of wrinkles on burst pressure were discussed. The biaxial loading conditions in the pipe were found affect the burst pressure of wrinkled pipes.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 412
Author(s):  
Shao-Ming Li ◽  
Kai-Shing Yang ◽  
Chi-Chuan Wang

In this study, a quantitative method for classifying the frost geometry is first proposed to substantiate a numerical model in predicting frost properties like density, thickness, and thermal conductivity. This method can recognize the crystal shape via linear programming of the existing map for frost morphology. By using this method, the frost conditions can be taken into account in a model to obtain the corresponding frost properties like thermal conductivity, frost thickness, and density for specific frost crystal. It is found that the developed model can predict the frost properties more accurately than the existing correlations. Specifically, the proposed model can identify the corresponding frost shape by a dimensionless temperature and the surface temperature. Moreover, by adopting the frost identification into the numerical model, the frost thickness can also be predicted satisfactorily. The proposed calculation method not only shows better predictive ability with thermal conductivities, but also gives good predictions for density and is especially accurate when the frost density is lower than 125 kg/m3. Yet, the predictive ability for frost density is improved by 24% when compared to the most accurate correlation available.


2021 ◽  
Vol 212 ◽  
pp. 104606
Author(s):  
Firouzeh Souri ◽  
Hua Ge ◽  
Ted Stathopoulos

Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


Sign in / Sign up

Export Citation Format

Share Document