Model and Simulation on Thermal Performance of Shape-Stabilized Phase Change Material Floor

Solar Energy ◽  
2004 ◽  
Author(s):  
Xu Xu ◽  
Yinping Zhang ◽  
Kunping Lin ◽  
Hongfa Di ◽  
Rui Yang

Shape-stabilized phase change material (PCM) is a kind of novel PCM. It has the following salient features: large apparent specific heat for phase change temperature region, suitable thermal conductivity, no container. In the present paper, a kind of floor based upon shape-stabilized PCM is put forward which can adsorb the solar radiation energy in the daytime and release the heat at night in winter. Therefore, in winter the indoor climate can be improved and the energy consumption for space heating may be greatly reduced. A model of analyzing the thermal performance of this shape-stabilized PCM is developed. By using the model, the influence of various factors (thickness of PCM layer, melting temperature, heat of fusion, thermal conductivity of PCM etc.) on the thermal performance is analyzed. The model is verified with the experimental results. The model and the analysis are helpful for the application of shape-stabilized PCM based floor in solar energy buildings.

2005 ◽  
Vol 128 (2) ◽  
pp. 255-257 ◽  
Author(s):  
Yinping Zhang ◽  
Xu Xu ◽  
Hongfa Di ◽  
Kunping Lin ◽  
Rui Yang

The novel shape-stabilized phase change material (PCM) has the following salient features: large apparent specific heat for the phase change temperature region, suitable thermal conductivity, and the ability to keep the shape stabilized when it undergoes a phase change. In this technical brief, we put forward a kind of shape-stabilized PCM floor that is able to absorb solar radiation energy in the daytime and to release the heat at night in winter. The thermal performance of a prototype room using such a floor was studied. The experiments show that the mean indoor temperature of a room with the PCM floor is about 2°C higher than that of the room without a PCM floor, and the indoor temperature swing range is obviously minimized. Therefore, installing shape-stabilized PCM in a room may increase the degree of thermal comfort and reduce space heating energy consumption in winter. In addition, the experimental results provide data for modeling and simulation research for such PCM floor systems.


2017 ◽  
Vol 753 ◽  
pp. 44-49
Author(s):  
Yin Zhang ◽  
Yang Ming ◽  
Ming Shan Zhang

Solid-liquid phase change material (PCM) is of high phase change heat and application potentials of thermal energy storage. In this paper, the thermal performance of PCM composites of sodium acetate and urea are investigated through experiment. Moreover, the main thermal-physical properties of such PCM composites with different mixing mass ratios are obtained through T-history method. The results show that with the rising urea mass fraction, both the phase change temperature and latent heat of fusion (enthalpy) decline. It also indicates that strontium sulfate is an effective nucleating additive to decrease super-cooling degree during solidification process for such composite PCM. This work is of high significant in improving the thermal performance of PCM composite and extending its applications.


2016 ◽  
Vol 717 ◽  
pp. 62-67 ◽  
Author(s):  
Bin Zhang ◽  
Qin He Sun ◽  
Wei Tong Liu

An effective method to reduce energy consumption for heating a building is by incorporating shape–stabilized phase change material (SSPCM) in building floors. In this study, a new type of SSPCM with increased thermal conductivity is formulated through a self–established experimental device. A model to analyze the thermal performance of the SSPCM floor is developed. The model is used to analyze the thermal performance of the SSPCM floor with two heating positions, one at the bottom and the other in the middle of the SSPCM. Results show that when the heating position is in the middle of the SSPCM, the melting speed is faster and the melting degree of SSPCM is larger than when it is at the bottom.


Author(s):  
John McCloskey ◽  
Amy Fleischer ◽  
Sneha Patel ◽  
Rashida Ng

The addition of phase change material (PCM) to a transparent polyester panel is used to create an energy absorbing building material that can be used for daylighting. One of the key development needs of this energy efficient material is the identification of the thermal properties. Without a clear understanding of the thermal properties and thermal performance with embedded solid and liquid PCM, design optimization is not possible. This experiment analyzes the thermal conductivity of various mixtures of thermoplastic polyester and PCMs. It was determined that the addition of PCM slightly increases the thermal conductivity of panels when the PCM is solid. Once the PCM has melted, the panel conductivity is lowered.


Sign in / Sign up

Export Citation Format

Share Document