The Determination of Thermal Properties of Paraffin-Based Phase Change Material [PCM] Within a Daylighting Panel

Author(s):  
John McCloskey ◽  
Amy Fleischer ◽  
Sneha Patel ◽  
Rashida Ng

The addition of phase change material (PCM) to a transparent polyester panel is used to create an energy absorbing building material that can be used for daylighting. One of the key development needs of this energy efficient material is the identification of the thermal properties. Without a clear understanding of the thermal properties and thermal performance with embedded solid and liquid PCM, design optimization is not possible. This experiment analyzes the thermal conductivity of various mixtures of thermoplastic polyester and PCMs. It was determined that the addition of PCM slightly increases the thermal conductivity of panels when the PCM is solid. Once the PCM has melted, the panel conductivity is lowered.

2018 ◽  
Vol 203 ◽  
pp. 06021
Author(s):  
Chun On Chin ◽  
Ying Kong Sih

There has been an ever-increasing interest in concrete incorporated with shape-stable phase change material (SSPCM) in recent years for its outstanding thermal performance. In this research, PCM was incorporated into porous lightweight aggregate, namely exfoliated vermiculite to form SSPCM. SSPCMS were integrated with concrete to study their effects on thermal behaviour. Thermal testing was performed using both hot plate and KD2Pro. From the obtained results, it was observed that thermal conductivity and diffusivity reduced by 29% and 63% respectively whereas specific heat capacity increased by 40% with inclusion of SSPCMs. It was concluded that the implementation of SSPCM technology can be seen as a feasible and economical solution for energy efficient buildings.


2020 ◽  
Vol 15 (4) ◽  
pp. 629-636
Author(s):  
Lulu Safira ◽  
Nandy Putra ◽  
Titin Trisnadewi ◽  
Eny Kusrini ◽  
Teuku Meurah Indra Mahlia

Abstract This study aims to investigate the thermal properties of a phase change material (PCM) based on coconut oil for building energy storage applications. Coconut oil is classified as an organic PCM composed of fatty acids made from renewable feedstock. However, low thermal conductivity is one of the major drawbacks of organic PCMs that must be improved. Graphene could be an effective material to enhance the thermal performance of organic PCMs. In this study, coconut oil with a latent heat capacity of 114.6 J/g and a melting point of 17.38°C was used. PCMs were prepared by sonicating graphene into coconut oil, as a supporting material. The mass fractions of the prepared PCMs were 0, 0.1, 0.2, 0.3, 0.4 and 0.5. Thermal conductivity tests were performed using a KD2 thermal property analyser under different ambient temperatures of 5, 10, 15, 20 and 25°C simulated with a circulating thermostatic bath. The latent heat, melting point and freezing point were determined through differential scanning calorimetry, the thermal stability was determined using thermogravimetric analysis (TGA) and the morphology and chemical structure were examined using transmission electron microscopy and Fourier-transform infrared spectroscopy, respectively. The results of this study showed that graphene addition to coconut oil improved the thermal performance, with the highest improvement seen in a 0.3 wt% sample at 20°C. The latent heat decreased by 11% owing to molecular movements within the PCM. However, TGA revealed that the composite PCMs showed good thermal stability in ambient building temperature ranges.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shibin Wu ◽  
Yan Chen ◽  
Zhenshou Chen ◽  
Jiaqi Wang ◽  
Miaomiao Cai ◽  
...  

AbstractMetal microspheres doping porous carbon (MMPC), which was prepared using in-situ pyrolysis reduction strategy, could enhance the thermal conductivity of shape-stabilized phase change material (ss-PCM) prepared by MMPC as the matrix. However, in previous studies that were reported, the preparation of MMPC needed to synthesize porous carbon by pyrolysis firstly, and then porous carbon adsorbed metal ions was pyrolyzed again to obtain MMPC, which was tedious and energy-prodigal. In this study, a one-step pyrolysis strategy was developed for the synthesis of MMPC through the pyrolyzation of wheat bran adsorbed copper ions, and the copper microspheres doping wheat bran biochar (CMS-WBB) was prepared. The CMS-WBB was taken as the supporter of stearic acid (SA) to synthesize the ss-PCM of SA/CMS-WBB. The study results about the thermal properties of SA/CMS-WBB demonstrated that the introduction of copper microspheres could not only improve the thermal conductivity of SA/CMS-WBB, but also could increase the SA loading amount of wheat bran biochar. More importantly, the CMS-WBB could be obtained by only one-step pyrolysis, which greatly simplified the preparation process and saved energy consumption. Furthermore, the raw material of wheat bran is a kind of agricultural waste, which is abundant, cheap and easy to obtain. Hence, the SA/CMS-WBB synthesized in this study had huge potentialities in thermal management applications, and a simplified method for improving the thermal properties of ss-PCMs was provided.


Solar Energy ◽  
2004 ◽  
Author(s):  
Xu Xu ◽  
Yinping Zhang ◽  
Kunping Lin ◽  
Hongfa Di ◽  
Rui Yang

Shape-stabilized phase change material (PCM) is a kind of novel PCM. It has the following salient features: large apparent specific heat for phase change temperature region, suitable thermal conductivity, no container. In the present paper, a kind of floor based upon shape-stabilized PCM is put forward which can adsorb the solar radiation energy in the daytime and release the heat at night in winter. Therefore, in winter the indoor climate can be improved and the energy consumption for space heating may be greatly reduced. A model of analyzing the thermal performance of this shape-stabilized PCM is developed. By using the model, the influence of various factors (thickness of PCM layer, melting temperature, heat of fusion, thermal conductivity of PCM etc.) on the thermal performance is analyzed. The model is verified with the experimental results. The model and the analysis are helpful for the application of shape-stabilized PCM based floor in solar energy buildings.


Sign in / Sign up

Export Citation Format

Share Document