System Modeling of Greenhouse Type Solar Water Heater

Author(s):  
Yiping Wang ◽  
Wei Tian ◽  
Yonghui Liu ◽  
Zhiyong Yang ◽  
Li Zhu ◽  
...  

A Greenhouse type solar water heater has been built to evaluate the thermal performance of the new system and to extend the application field of thermosyphon solar heating system. The system consists of flat plate absorbers, greenhouse, water storage tanks and connection pipes. The greenhouse has dimensions of 34.6m in length and 9.2m in width. Ten cylindrical tanks of 0.5m in diameter and 1.5m in length and the flat plate absorbers with total area of 138m2 are connected in parallel. The roof and south wall of the greenhouse are made from polycarbonate which has high light transmission and low heat transmission and other walls are from Sandwiched color steel plates which are thermally insulated from the ambient environment. The water storage tanks, the flat plate absorbers and the connection pipes, which need no other insulation because of greenhouse effect, are placed in the greenhouse. The experimental data includes solar radiation, wind speed, ambient temperature, greenhouse air temperature, storage water temperature, and absorber temperature et al. To investigate new system performance, it is necessary to develop mathematical model which is different from models of traditional thermosyphon solar water heater because the new system combines natural circulation system and greenhouse technology. The transient thermal model of greenhouse type solar water heater is derived, which is based on energy balance of the flat plate absorbers, the floor, the air in the greenhouse, the roof, and the storage tank. Greenhouse air temperature and storage water temperature are predicted and mass flow rate is calculated according to the balance between the frictional pressure drop and pressure due to density differences around the thermosyphon circuit. It shows that the experimental data fit well with the estimated values according to the new mathematical models.

2013 ◽  
Vol 756-759 ◽  
pp. 4492-4496
Author(s):  
Bo Yang Zhang ◽  
Ya Hui Xie ◽  
Shun Xiang Sun

This paper describes the application forms of building integrated with solar energy. We explain a solar water heating system; its solar collectors and water storage tanks are placed together. We discuss another solar water heating system, its solar collectors are placed together but its water storage tanks are placed in every resident's home. This paper also introduces the wall-hung SWH and the application of solar refrigeration and solar heating. At last we analyze the problems of the development of solar water heater integrated with modern architecture.


Author(s):  
Sunaina Sailani

In this study we are obtaining the maximum temperature of solar water heater using of PV cells. The flat plate solar water heater are consisting using several parts such as collector , flat plate glass , circulating pump, PV cells , frame . The centrifugal pump is operated by PV Cells. Water temperature is measured by digital temperature meter. Hot water is storage in container. The most elements of these are a clear front cover, collector housing associated an absorbent material.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Vinod Kumar Soni ◽  
R. L. Shrivastava ◽  
S. P. Untawale ◽  
Kshitij Shrivastava

Concentrated solar power (CSP) is a mature and efficient technology to cater the large-scale demand of hot water. Conventional reflectors/mirrors in CSP share 50% of total system cost. High installation as well as O&M cost is the major concern in reflector-based CSP. Apart from the above, manufacturing defects and adverse service environment cause premature degradation of reflectors and substantial drop in efficiency and service life. Performance analysis of an innovative optically concentrated solar water heater (OCSWH) using plurality of Fresnel lenses of poly methyl methacrylate (PMMA) is presented in the work. Size and yield of any solar water heater (SWH) are mainly dependent on its aperture area, output temperature, and mass flow rate, which are termed herein as critical parameters. Series of experimentations is carried out by varying critical design and operating parameters viz. aperture area, outlet temperature, and rate of mass flow, and similar experimentation is also carried out on commercially available flat plate SWH to compare its performance. Loss of heat from riser and header pipes is restricted by application of effective insulation. Substantial improvement in collector efficiency, increase in rate of mass flow, and rise in discharge temperature with reference to flat plate collector are noted. Economics is also studied covering life cycle cost (LCC), life cycle saving (LCS), and energy payback period.


Sign in / Sign up

Export Citation Format

Share Document