One Fast Fixture Layout and Clamping Force Optimization Method Based on Finite Element Method

Author(s):  
Zhihui Liu ◽  
Michael Yu Wang ◽  
Kedian Wang ◽  
Xuesong Mei ◽  
Guo Hua

Aimed to reduce the deformation of workpiece-fixture system, one fixture layout and clamping force optimal method is constructed in this paper. Firstly, system stiffness matrix is built by Finite Element Method (FEM), and one matrix size reducing method is proposed to avoid the high computing time cost of solving FEM balance equation. Secondly, one clamping force optimization method which should be called after fixture layout is generated during every step of optimization algorithm is presented to lessen calling times of FEM solving process and save running time. And then based on these, one fixture layout and clamping force optimization algorithm is constructed using genetic algorithm (GA). At the end of this paper, numeral examples are taken to verify the validity and usability of the methods.

2011 ◽  
Vol 189-193 ◽  
pp. 2153-2160
Author(s):  
Yu Wen Sun ◽  
Chuan Tai Zhang ◽  
Qiang Guo

Optimal fixture involves fixture layout and clamping force determination. It is critical to ensure the machining accuracy of workpiece. In this paper, the clamping process is analyzed with the consideration of cutting forces and frictions using the finite element method. Then the fixture layout and clamping force are optimized by minimizing the workpiece deformation via a Genetic Algorithm (GA). Subsequently, linear programming method is used to estimate the stability of workpiece. It is shown through an example that the proposed method is proved to be efficient. The optimization result is not only far superior to the experiential one, but also the total optimization time can be reduced significantly.


Author(s):  
Hamed Sanikhani ◽  
Javad Akbari ◽  
Ali Reza Shahidi ◽  
Ali Akbar Darki

Standing-wave ultrasonic motors are a modern class of positioning systems, which are used to deliver a high precision linear or rotary motion with an unlimited stroke. The design process should be performed through an effective optimization algorithm in order to guaranty proper and efficient function of these motors. An optimization method of ultrasonic motors is proposed based on the combination of finite element method and factorial design as a design of experiments in this study. The results show the ability of this method in optimal design of ultrasonic motors especially those which have a complex structure and multi modes operation principle.


2019 ◽  
Vol 66 (4) ◽  
pp. 432-438
Author(s):  
Yingwei Liu ◽  
Zhongwu Zhang ◽  
Yang Zhang ◽  
Jianneng Zhang

Purpose It is a challenge in the design to determine the feasible anode position and the supply current when the hull is protected by the impressed current cathodic protection method. It is difficult to obtain these parameters through traditional experimental methods due to the huge hull surface area and geometric complexity. This study aims to solve the problem by finite element method. Design/methodology/approach First, a great number of experiments need to be conducted; second, experiments are empirical; finally, there exist measurement errors, etc. All these factors make the experimental results less reliable. The application of the finite element method, combined with other technologies, is expected to overcome these deficiencies. In this paper, the combined Matlab and Comsol method was used to calculate various anode positions and corresponding protection areas with a series of input current conditions. The calculation is implemented via the script in Matlab. Findings As a result, the best design can be obtained. The results show that the method provided in this paper can replace the experiment to a certain extent, save human and material resources and reduce the design time. The method also can be applied to other similar fields, having a good universality. Originality/value This optimization method can be extended to other areas of relevant production and research, having a good universality.


2014 ◽  
Vol 556-562 ◽  
pp. 91-95
Author(s):  
Xiao Wen Li ◽  
Ping Li ◽  
Zhuang Lin ◽  
Dong Mei Yang

Composite to metal joints as important components of marine structures are gradually found in the marine industry. The purpose of this study is to investigate mechanical performance and optimization method of the composite sandwich to steel joints. The main emphasis was placed on the mechanical properties of a hybrid joint between a sandwich glass fibre reinforced plastic superstructure and a steel main hull. Based on the experiments of a base joint, a new finite element method was used to analyze a series of joints. The optimized joint was presented due to reducing weight and enhancing the mechanical performance. The numerical predictions of the base hybrid joint showed a very good correlation with the experiment results, which validated the reliability of the new finite element method. The strength of the optimized joint was also evaluated by finite element method. The result is similar to the base joint. And there is no additional stress concentration in weak parts. The optimized joint has 30% lower weight than the base joint, and the stress is only about 5% ~ 56% of the base one. The results of the present work imply that the change of geometric parameter is an effective method to improve the performance of the metal to composite joint.


2011 ◽  
Vol 189-193 ◽  
pp. 1941-1945
Author(s):  
Yong Li ◽  
Jian Rong Zheng

An understanding of flow behavior of polymer melts through a slit die is extremely important for optimizing die design. In this paper numerical simulations have been undertaken for the flow of linear low-density polyethylene through Coat-hanger sheet dies. A new finite element method is proposed to simulate the flow in slit channel using Wagner constitutive model. This is one kind of finite element semi-analytical method by which the velocity distributions in thickness direction is approach by Fourier series. Numerical results of volumetric flow and pressure in coat-hanger dies are given to compare to the three-dimensional simulation using the finite element method. It appears that numerical solutions are as accurate as the complete 3D calculations and the computing time can be saved.


2014 ◽  
Vol 898 ◽  
pp. 217-220
Author(s):  
Jin Hong Ma ◽  
Bin Tao ◽  
Xiao Han Yao

The housing fillet of universal mill affects the strengthen and stiffness of mill. It is necessary to optimize the housing fillet. In this paper, the simulated annealing algorithm (SA) combined with finite element method (FEM) , a new kind of structural optimization method is established. MATLAB language is used to compile the program combined the SA with FEM to optimize housing fillet of universal mill. Compared with the zero order and first order optimization method of ANSYS program, the result of this optimal method is better.


2012 ◽  
Vol 433-440 ◽  
pp. 746-753
Author(s):  
Payam Karimi ◽  
Shahin Shadlou ◽  
Bahare Nazari

Optimizing the complicated engineering structures has always been a huge issue. A technique for the design optimization of different components is presented using genetic algorithm and finite element method. To reduce the runtime and increase the efficiently of proposed model a new method of coupling is presented. In addition, two different problems were solved using the presented model and the results showed a great and fast convergence.


Sign in / Sign up

Export Citation Format

Share Document