Noise and Vibration Reduction Performance Test of Rubber Damping Pad Under Slab Track in High Speed Railway

Author(s):  
Rong Chen ◽  
Ping Wang ◽  
Likang Guo

Rubber damping pad under ballastless slab track can isolate structure vibration and noise so as to reduce stress and wear of railway track components. In order to make scientific evaluation on the influence of rubber damping pad on the dynamic response of the track structure, focusing on the engineering practice of Chengdu-GuanDujiangyan high-speed railway, comparative test of slab track with and without rubber damping pad is carried out by using acceleration sensors, acoustic sensors, and dynamic data acquisition system. Spectrum analysis of vibration acceleration and noise test results shows that rubber damping pad under track slab can greatly isolate the substructure vibration of the track, the bridge vibration and ground vibration; vibration level of the base slab under the pad is reduced by about 20.1dB; the rubber damping pad can reduce some of the structure noise caused by the bridge structure vibration, but it has no significant effect on noise reduction of the whole system due to the influences of EMU pantograph’s arc noise, severe air turbulence noise and field test environment.

2013 ◽  
Vol 706-708 ◽  
pp. 1443-1449 ◽  
Author(s):  
Yi Shi Guo ◽  
Zu Jun Yu ◽  
Hong Mei Shi

The slab track is the main structure of the high-speed railway track, the Inherent dynamic characteristics of which is of great significance to the research on the Vehicle-Track Coupling Dynamics. The assumptions of the modal function describing the natural vibration of the track is a necessary theoretical basis in analytic and numerical calculations for dynamics problems, which is more in accordance with the real situation, the more likely characteristic estimation are to be accurate. In this paper, with the method of combine matrix, the system characteristic equation of slab-track model is deduced, and the exact analytic formulas of frequency equation and modal function are obtained. Meanwhile the specific effects of the Rail longitudinal force on the vibration performance of the tracks are analyzed through instances. The results show that this approach is an effective analytic method, the solution of which is accurate. And the track parameters can be flexibly initialized, which is especially applicable for the condition of track parameters varying and longitudinal strain with distribution.


2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Kazem Jadidi ◽  
Morteza Esmaeili ◽  
Mehdi Kalantari ◽  
Mehdi Khalili ◽  
Moses Karakouzian

Asphalt is a common material that is used extensively for roadways. Furthermore, bituminous mixes have been used in railways, both as asphalt and as mortar. Different agencies and research institutes have investigated and suggested various applications. These studies indicate the benefits of bituminous material under railways, such as improving a substructure’s stiffness and bearing capacity; enhancing its dynamic characteristics and response, especially under high-speed train loads; waterproofing the subgrade; protecting the top layers against fine contamination. These potential applications can improve the overall track structure performance and lead to minimizing settlement under heavy loads. They can also guarantee an appropriate response under high-speed loads, especially in comparison to a rigid slab track. This review paper documents the literature related to the utilization of asphalt and bituminous mixes in railway tracks. This paper presents a critical review of the research in the application of asphalt and bituminous mixes in railway tracks. Additionally, this paper reviews the design and construction recommendations and procedures for asphalt and bituminous mixes in railway tracks as practiced in different countries. This paper also provides case studies of projects where asphalt and bituminous mixes have been utilized in railway tracks. It is anticipated that this review paper will facilitate (1) the exchange of ideas and innovations in the area of the design and construction of railway tracks and (2) the development of unified standards for the design and construction of railway tracks with asphalt and bituminous mixtures.


2010 ◽  
Vol 163-167 ◽  
pp. 122-126 ◽  
Author(s):  
Ru Deng Luo ◽  
Mei Xin Ye ◽  
Ye Zhi Zhang

Orthotropic monolithic steel bridge deck system stiffened by U rib is very fit for high-speed railway steel bridges because of its excellent mechanical behaviors. Thickness of flange is a very important parameter of U rib and has influence on mechanical behaviors of orthotropic monolithic steel bridge deck system. Based on the engineering practice of Anqing Yangtze River Railway Grand Bridge, the kind and the extents of influences of thickness of flange of U rib on mechanical behaviors of orthotropic monolithic steel bridge deck system are studied with finite element analysis. The results show that thickness of flange of U rib has relative large positive influences on rigidity, strength and stability of orthotropic monolithic steel bridge deck system. 14~18mm is the appropriate range of thickness of flange of U rib for high-speed railway steel bridges.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


2021 ◽  
Vol 27 (4) ◽  
pp. 04021030
Author(s):  
Xiaohui Wang ◽  
Jianwei Yang ◽  
Jinhai Wang ◽  
Yanxue Wang ◽  
Fu Liu

2018 ◽  
Vol 8 (5) ◽  
pp. 667 ◽  
Author(s):  
Song Liu ◽  
Jun Yang ◽  
Xianhua Chen ◽  
Guotao Yang ◽  
Degou Cai

Sign in / Sign up

Export Citation Format

Share Document