Three-Dimensional Discharge Simulation of Inductively Coupled Plasma Etcher

Author(s):  
Jia Cheng ◽  
Yu Zhu ◽  
Guanghong Duan ◽  
Yangying Chen

Based on the commercial software, CFD-ACE+, a three-dimensional discharge model of an inductively coupled plasma (ICP) etcher was built. The spatial distributions of the electron temperature and the electron number density (END) of the argon plasma were simulated at 10 mTorr, 200 W and 200 sccm. One-dimensional distribution profiles of the plasma parameters above the wafer’s surface at different pressures and powers were compared. These results demonstrate that the END increases with both pressure and power. And the electron temperature decreases with pressure. The methods and conclusions can be used to provide some reference for the configurations of the chamber and the coil of the ICP equipment design and improvement and process parameters selection.

2019 ◽  
Vol 26 (10) ◽  
pp. 103503 ◽  
Author(s):  
Jia Han ◽  
Patrick Pribyl ◽  
Walter Gekelman ◽  
Alex Paterson ◽  
Steven J. Lanham ◽  
...  

2012 ◽  
Vol 24 (05) ◽  
pp. 453-459 ◽  
Author(s):  
Shenhsiung Lin ◽  
Chia-Chen Chang ◽  
Chii-Wann Lin

Heavy metals greatly influence animal physiology, even at small doses. Among these metals, the copper ion is of great concern due to its effects on humans and wide applications in industry. Compared to atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry, which destroy the samples that are analyzed, optical techniques do not decompose the analyte and have become a popular field of recent research. In this paper, we combined a novel optical detector that did not require sample-labeling, called surface plasmon resonance (SPR), with chitosan to detect copper ions by modifying the functional groups of chitosan through pH modification. Compared to other optical detectors, the SPR system was relatively fast and involved fewer experimental confounding factors. The three-dimensional structure of chitosan was used to obtain lower detection limits. Moreover, modification of the chitosan functional groups resulted in efficient regeneration by controlling the pH. A detection limit of 0.1 μM was obtained (linear range: 0.5–10 μM, R2 = 0.976), and the specificity was certified by comparing the copper ion with six other ions. Additionally, we successfully regenerated the SPR chips by modifying the functional groups. In conclusion, the chitosan–SPR system detected copper ions with improved detection limits using a quick and simple regeneration method.


1981 ◽  
Vol 35 (4) ◽  
pp. 380-384 ◽  
Author(s):  
Robert S. Houk ◽  
Harry J. Svec ◽  
Velmer A. Fassel

Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures ( Tion) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the ratio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The Tion values derived from measurement of Ar+2/Ar+, Ba+2/Ba+, Sr+2/Sr+, and Cd+/I+ are all greater than those expected from excitation temperatures measured by other workers. The latter three values for Tion are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas.


Sign in / Sign up

Export Citation Format

Share Document